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Università degli studi di Roma

“Tor Vergata”

Radiative properties of complex

magnetic elements in the solar

photosphere.

Thesis Author:
Dr. Serena Criscuoli

Thesis Advisors:

Prof. Mark Rast, Prof. Francesco Berrilli

Thesis Coordinator:
Prof. Roberto Buonanno



www.manaraa.com

A thesis submitted to

The University of Rome “Tor Vergata”
in partial fulfillment of the requirements for the degree

of
Doctor of Philosophy in Astronomy.

2



www.manaraa.com

3



www.manaraa.com

Soles,
soles solerum,

mea verba dicata sunt.

4



www.manaraa.com

To the Sun,
Star among the Stars,

these words are dedicated

i



www.manaraa.com

Contents

1 Introduction: The Solar Magnetic Field 1
1.1 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Solar Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Photospheric magnetic features . . . . . . . . . . . . . . . . . . . 6

1.3.1 Active regions: formation and evolution . . . . . . . . . . 9
1.4 Solar Variability and Irradiance Variations . . . . . . . . . . . . . 10
1.5 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Fractal dimension estimation of facular regions 14
2.1 Fractals: introduction . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Fractal dimension estimation of solar magnetic features . . . . . 17
2.3 Observations, processing and definitions . . . . . . . . . . . . . . 20

2.3.1 PSPT data . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Data quality . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Feature identification . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Perimeter and area evaluation . . . . . . . . . . . . . . . . 22

2.4 Fractal Dimension Estimator: The Perimeter Area relation . . . 23
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Fractal dimension and feature size . . . . . . . . . . . . . 25
2.5.2 Temporal variation . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Comparison to previous results . . . . . . . . . . . . . . . . . . . 27
2.6.1 Fractal dimension and structure size . . . . . . . . . . . . 27
2.6.2 Temporal variation . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Discussion of fractal dimension estimation . . . . . . . . . . . . . 28
2.7.1 Perimeter definition and pixelization effects . . . . . . . . 28
2.7.2 Resolution and seeing effects . . . . . . . . . . . . . . . . 30

2.8 Results interpretation . . . . . . . . . . . . . . . . . . . . . . . . 32

3 A study of faculae photometric properties 34
3.1 On the importance of magnetic features contrast measurements . 34
3.2 Observations and data reduction . . . . . . . . . . . . . . . . . . 36

3.2.1 PSPT data . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Magnetic regions identification technique . . . . . . . . . 36

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Center to Limb variation . . . . . . . . . . . . . . . . . . 38
3.3.2 Black body approximation . . . . . . . . . . . . . . . . . . 40
3.3.3 Size and Activity Cycle dependence . . . . . . . . . . . . 41
3.3.4 Observational limitations . . . . . . . . . . . . . . . . . . 44

ii



www.manaraa.com

3.4 Discussion of results and comparison with previous analyses . . . 45
3.5 Geometric and Photometric properties of faculae . . . . . . . . . 47

4 The flux tube model 49
4.1 The concept of Flux Tube . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Temperature stratification and photometrical properties . 52
4.2 The Magneto Hydro Dynamic Equations . . . . . . . . . . . . . . 55

4.2.1 Magneto Hydrostatic Static Equations . . . . . . . . . . . 56
4.2.2 Formation and Destruction of Intense Magnetic Flux Tubes 58
4.2.3 Brief review of Numerical Codes of Magnetic Flux Tubes 59

5 The Radiative Transfer Equation and the Short Characteristic
technique 63
5.1 The Radiative Transfer Equation . . . . . . . . . . . . . . . . . . 63

5.1.1 The exact solution . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Moments of Intensity . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 TE and LTE . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.4 Radiation Matter interaction . . . . . . . . . . . . . . . . 67
5.1.5 Rosseland Mean opacity . . . . . . . . . . . . . . . . . . . 68
5.1.6 Approximate solutions to the RTE . . . . . . . . . . . . . 69

5.2 Radiative Equilibrium Gray atmosphere . . . . . . . . . . . . . . 72
5.3 Numerical solution to the RTE: The Short Characteristic . . . . 73

5.3.1 Propagating the intensity on the grid . . . . . . . . . . . . 77
5.4 Quadrature techniques . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Carlson schemes . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Gauss Legendre scheme . . . . . . . . . . . . . . . . . . . 85

6 Preliminary Tests 86
6.1 Integration techniques . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Interpolation effects: Search Beam technique . . . . . . . . . . . 88

6.2.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Combined effects of integration and interpolation . . . . . . . . . 96
6.4 Eddington Barbier Atmosphere . . . . . . . . . . . . . . . . . . . 97
6.5 Quadrature techniques . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 A Flux Tube Model 105
7.1 NON magneto NON dynamic Flux Tube Models . . . . . . . . . 105
7.2 Tubes in NON radiative equilibrium . . . . . . . . . . . . . . . . 107

7.2.1 Radiative Diffusion atmospheres with convection . . . . . 107
7.3 Atmospheres in radiative equilibrium . . . . . . . . . . . . . . . . 110

7.3.1 Initial and boundary condition: Radiative Diffusion at-
mospheres without convection . . . . . . . . . . . . . . . . 110

7.4 Computational and Numerical Details . . . . . . . . . . . . . . . 113

8 Results 114
8.1 Physical properties of simulated magnetic flux tubes . . . . . . . 114

8.1.1 Models with Convection: Models C . . . . . . . . . . . . 114
8.1.2 Radiative Equilibrium models . . . . . . . . . . . . . . . . 117

8.2 Intensity profiles at constant optical depth . . . . . . . . . . . . . 125

iii



www.manaraa.com

8.2.1 An illustrative example . . . . . . . . . . . . . . . . . . . 125
8.2.2 Developed Models . . . . . . . . . . . . . . . . . . . . . . 128

8.3 Ratio of contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4 Comparison with Observations and Conclusions . . . . . . . . . . 133

9 Conclusions and Future Work 135

A Appendix to Chapter 2 148
A.1 Fractal dimension measurement of Non-fractal objects . . . . . . 148
A.2 von Koch snowflake . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.3 Fractal dimension measurement of Fractional Brownian motion

patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B Appendix to Chapter 6 154

C Appendix to Chapter 7 156
C.1 Mixing Length models . . . . . . . . . . . . . . . . . . . . . . . . 156

C.1.1 Generalization of Mixing Length Formulation . . . . . . . 158
C.1.2 Not radiating parcel . . . . . . . . . . . . . . . . . . . . . 158

C.2 Radiative Diffusion models . . . . . . . . . . . . . . . . . . . . . 159

D Appendix to Chapter 8 162
D.1 About the iso-optical depth surfaces and the intensity profile . . 162
D.2 Ratio of contrasts in quiet atmosphere . . . . . . . . . . . . . . . 164

iv



www.manaraa.com

List of Figures

1.1 The interior and the atmosphere of the Sun are ideally sepa-
rated into layers. In the core energy is produced by nuclear
reactions. The Radiative and the Convective zones are named
after the predominant energy mechanism transport in these lay-
ers. The photosphere is the lowest layer of the atmosphere that
can be observed. Above it the chromosphere and the corona
host several phenomena of magnetic origin (in the picture: flares
and prominences). The flare, sunspots and photosphere, chromo-
sphere, and the prominence are all clipped from actual images of
the Sun taken by instruments onboard on SOHO spacecraft. . . 3

1.2 Temperature as a function of height in the Solar atmosphere.
The layers at which lines and bands have stronger emissivity are
also shown. Observations at different wavelengths thus allow to
investigate different portions of the atmosphere. From Vernazza
et al. (1981). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Solar dynamo sketch. (a) At the minimum of activity the mag-
netic field is bipolar. (b) Because of the differential rotation
a stronger and stronger toroidal component is created as the
time passes. (c) Magnetic ropes eventually emerge forming loops
whose foot points, because of the Coriolis force, are twisted.(d)
and (e) More magnetic field emerges and spread. These loops
form bipolar regions, with the polarities oriented as shown in (f).
The migration toward the equator and the poles finally causes
flux cancellation and reversal of the polarity of the field. The
red sphere represents the radiative region and the blue net is the
base of the photosphere. These two regions are separated by a
convective unstable layer. Adapted from Dikpati and Gillman
(2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Classification of Solar Magnetic Features observed in the Photo-
sphere. From Zwaan (1987). . . . . . . . . . . . . . . . . . . . . . 6

v



www.manaraa.com

1.5 Active region (AR 424, 8 August 2003) observed at different res-
olution and at different spatial scale. The high resolution im-
ages show that both faculae and sunspots are made up of smaller
substructures. Faculae are in particular made up of smaller bril-
liant elements. Full disk image: CaII K image from Rome-PSPT
archive (2 arcsec/pixel). Inset on the left: 436.4 continuum, from
Swedish Solar Telescope (0.04 arcsec/pixel). Inset on the right:
CA II H, from Swedish Solar Telescope. The two high resolution
images were acquired by G. Scharmer and K. Langhans. The
SST is operated on the island of La Palma by the Institute for
Solar Physics of the Royal Swedish Academy of Sciences. . . . . 8

1.6 Solar calcium K line in quiet and plage regions. Adapted from
Skumanich et al. (1984). . . . . . . . . . . . . . . . . . . . . . . 9

1.7 a): TSI over the period 1950-1998. b): Spectral Irradiance. c):
Spectral Irradiance changes between 1989 (solar maximum) and
1996 (solar minimum). d): Fractional Irradiance change for the
period as in panel c). At shorter wavelengths of the spectrum,
Irradiance relative variations are higher (up to two orders) respect
to longer wavelengths. From Hansen et al. (2002). . . . . . . . . 11

2.1 Fractals are classified according to their self-similarity properties.
Here examples from the three categories described in the text are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 When measured with smaller and smaller size rulers, the length
of coast of Britain increases. Scatter plots in log scale of coast
length and ruler precision, are fitted by a straight line whose slope
is ≈ −0.26. The fractal dimension is thus D ≈ 1.26. . . . . . . . 17

2.3 Summary of papers concerning fractal analyses of solar mag-
netic features. Studies have been carried out on different kind
of data and with different estimators (PA:Perimeter-Area; BC:
Box Counting; LA: minimum external box size-Area), so that
fractal dimension estimates (right column) are often discrepant.
From McAteer et al. (2005). . . . . . . . . . . . . . . . . . . . . 18

2.4 Perimeter (in units of pixel) and Area (in units of pixels square)
in logarithmic scale of detected structures on OAR PSPT data
taken during summer 2002. Continuous line is the fit to the whole
set of data (D = 1.354 ± 0.005). Points at area greater than
about 1000 pixels square are better approximated by a higher
slope line. Horizontal line is the area window width over which
d1 is estimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Fractal dimension d1 versus area of bright features identified on
calcium images (∼ 2arcsec/pixel). Full circles: summers 2000-
2005 OAR-PSPT. Open triangles: summer 2005 MLSO-PSPT.
Full triangles: summer 2005 OAR-PSPT. d1 increases fast with
object size at area smaller than 2000 Mm2. For larger areas, a
plateau is observed for summer 2005 OAR and MLOA data, and
a slow rise on the 2000-2005 OAR dataset. . . . . . . . . . . . . 24

vi



www.manaraa.com

2.6 Temporal variation of the fractal dimension d1 versus area for
features identified on OAR-PSPT calcium images. The bar on
the left represents the largest error bar, obtained for the largest
areas for year 2004. At area smaller than about 1000 Mm2 all
the curves overlap, while differences (not clearly correlated with
solar cycle) are observed at the largest areas. . . . . . . . . . . . 25

2.7 Temporal variation of the fractal dimension D versus area for
selected OAR-PSPT calcium images and for different area range.
Error bars in the case of fits performed on the whole dataset
(circles) or at smallest objects (triangles) are smaller then the
symbol size. Results obtained for the largest area are in good
agreement with results obtained by d1 estimator (fig.2.6). . . . . 26

2.8 d1 evaluated for von Koch snowflakes of level 6. Likewise non
fractal objects and real data, d1 increases with object size and
reaches a plateau at areas ≥ 1000 pixel2. The plateau value,
about 1.34, is an overestimate of the snowflake fractal dimension
(see text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Facular fractal dimension estimated on the two different full reso-
lution MLSO quality sets described in the text. When the estima-
tion is carried out on images less affected by seeing degradation,
the measured fractal dimension is higher. . . . . . . . . . . . . . 31

3.1 Center to Limb variation of facular contrast measured at different
wavelengths by different authors. Squares: 5250Åfrom Frazier
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Abstract

In this thesis I investigate the photometric and geometric properties of bright
magnetic features in the lower solar atmosphere. The contribution of these fea-
tures to Total Solar Irradiance (TSI here after) variations observed at different
temporal scales has been broadly showed during the last years. Nevertheless,
measurements and theoretical investigations of their properties, on which recon-
structions of TSI variations are based, have produced discrepant results.

In order to interpret discrepancies presented in the literature and to improve
our understanding of physical properties of magnetic elements, both experimen-
tal and theoretical aspects have been investigated.

In the first part of the thesis I show results obtained by the analysis of full
disk PSPT broad band images from Rome and Hawaii. Geometric properties
and the possible connection with photometric properties have been investigated
through the measurement of fractal dimension of features observed in chromo-
sphere. Results I obtain agree very well with the ones presented in the literature
carried out on similar data and with the same fractal dimension estimator. The
fractal dimension increases in fact with features area and reaches a plateau at
areas larger than about 1000-2000 Mm2. Nevertheless, by the analyses of im-
ages of fractals whose dimension is known by the theory, I show that fractal
dimension estimation is critically effected by pixelization, technique employed
to select magnetic structures on images and resolution. In particular the in-
crease of fractal dimension with object size is an effect of pixelization and thus
some conclusions previously drawn in the literature should be revisited.

Photometric properties are investigated by the analyses of contrast of identi-
fied features in two photospheric bands and in the chromosphere. In particular
the variation of the contrast with position on the solar disk and with object
size is investigated. I show that the contrast in the chromosphere is not depen-
dent on disk position and that in the photosphere monotonically increases from
the center toward the limb. A comparison with previously published results
shows a better agreement with authors that employed an identification meth-
ods similar to the ones I employed to select magnetic features on images. The
contrast, especially at the limb, is also critically affected by seeing. Comparison
of the scaling of average and maximum contrast with object size suggests that
the smaller magnetic elements, whose clustering forms the features analyzed,
are characterized by different photometric properties. The increase of average
contrast with object size, very similar to the increase observed for the fractal
dimension, is instead an effect of filling factor.

In order to investigate the physical origin of the results and validate some
of the conclusions drawn, 2D numerical codes based on the magnetic flux tube
model have been developed. Plane parallel gray atmosphere in LTE is supposed
and radiative and convective energy transport mechanisms have been taken into
account. In particular two classes of models are investigated. In the first one
convection is modelled by the Mixing length theory and radiation by the ra-
diative diffusion approximation. In the second one only radiation is taken into
account, but radiative diffusion approximation is dropped and radiative equi-
librium is imposed by an iterative scheme. The presence of the magnetic field
is mimicked by imposing a lower pressure and density in the magnetic region.
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In order to evaluate the radiation field a numerical code, based on the short
characteristic technique, was developed. A detailed description of the code,
as well as results obtained by tests aimed to investigate and compare different
numerical techniques and spurious effects, are presented. The radiative flux is
finally evaluated by a quadrature scheme. At this aim two schemes have been
developed and compared. The software developed has allowed to investigate
radiation field through the flux tube models studied. I show that the presence
of a magnetic structure generates areas of different shapes and contrast around
it. These features vary with the position of the structures on the solar disk (the
sight angle) and have spatial scales smaller than the typical scale of a flux tube
(about 100 km), so resolution better than 0.1 arcsec is required to observe them.
The contrast of magnetic features varies also in function of the optical depth, so
that for the same model different center to limb variations of the contrast can
be observed. This indicates that when observing magnetic structures at differ-
ent wavelengths the contrast can be very different, thus partially explaining the
discrepant results obtained in the literature. Investigation of the results also
shows that the center to limb variation of the contrast reflects the temperature
stratification inside and outside the tube. Measurements carried out at differ-
ent wavelengths are thus fundamental for the determination of temperature of
magnetic structures and for the investigation of their physical properties.

ii



www.manaraa.com

Chapter 1

Introduction: The Solar

Magnetic Field

The Sun is a very complex and active object on which many phenomena, char-
acterized by different spatial, temporal and energetic scales, take place. These
phenomena have also been observed on other stars. Their investigation on our
star provides more observational details and is thus an incredible test for the-
oretical and numerical models developed to explain the physical processes that
regulate them.

What makes the Sun such a complex and active object is its magnetic field.
The study of physical and observational properties of particular magnetic struc-
tures is the purpose of this thesis. In this chapter I will thus describe some
characteristic of the magnetic field of the Sun and in particular will illustrate
the features of magnetic origin observed on the photosphere. Moreover, some of
the phenomena observed on our star have deep influence on the earth. One of
these is the variation, on different time scales, of the solar energy output, that
is thought to have a role in climate changes. These variations are related, in
the manner I will explain in the following, to properties of magnetic features
observed in photosphere and chromosphere. The investigation of total solar en-
ergy output is for this reason the motivation that drives most of the studies, as
well as part of this work, of photometric properties of magnetic features. A brief
description of solar energy output variations measurements and reconstructions
is thus given.

The content of this chapter is introductory. Its purpose is to present to
the reader some vocabulary, physical aspects and open questions that concern
the studying of the Sun and its Magnetic field. The reader familiar with these
problematic will want to read only the last paragraph, in which I describe the
main purpose of this thesis and its structure.

1.1 The Sun

The Sun is G2 type star. It is 5 billions years old, its average distance from
the Earth is about 1.5 × 1011 meters, has a mass of about 2 × 1030Kg and
its Luminosity is 3.8 × 1026 W. In the core, the central area of thickness 0.3
solar radii, energy is generated by nuclear reactions, mainly p-p chains through

1
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which Hydrogen is burnt into Helium. Also CNO reactions take place, but they
produce only 1.2% of the total energy. Here the temperature is about 10 millions
degrees and the matter density is about 105 kg/m3. The energy propagates from
the center to the outer layers through radiative processes, electron conduction
and convection. The first two processes dominate up to a distance of 0.7 solar
radii so that the zone between 0.3 and 0.7 solar radii is referred as Radiative.
In this layer the temperature drops from about 8 × 106 to 5 × 105 degrees and
the density from about 104 to about 10 kg/m3. At a distance larger than 0.7
solar radii the opacity of the gas increases because the temperature and density
are such that Hydrogen and Helium are partially ionized. As a consequence
the radiative flux is not enough to carry the total energy flux and convection
sets in. Convective instability ceases at the base of the photosphere, the lower
layer of the solar external atmosphere. At this level matter becomes transparent
and radiation can escape. Technically we define the surface of the Sun as the
surface at which the optical depth is equal to unity. Convection overshoots into
the photosphere for about 200 km. Structures of convective nature are thus
observed in these layers. Namely with the term granulation we refer to cellular
patterns of hexagonally shaped structures (the granules) of typical size of about
1000 km, surrounded by dark lanes. The center of granules is about 30% brighter
than the surrounding atmosphere and have associated upflow motion. Downflow
motion is associated to the dark lanes. Granulation typical lifetime is about 10
minutes. It is organized in larger structures (5000-10000 km), characterized
by longer lifetime but lower vertical velocity respect to the granulation. These
motions are referred as Mesogranulation. The term Supergranulation refers
finally to structures of typical spatial scale of 35000 km, that evolve on temporal
scales of several days and that have associated horizontal velocities of about 4000
km/sec and vertical motions of 50-200 m/sec.

The thickness of the photosphere is about 500 km. Above it we find the Chro-
mosphere (about 2000 km) and the Corona. While the gas density continues to
decreases with height (it is about 10−4 kg/m3 at the base of the photosphere
and decreases to about 10−13 kg/m3 in the Corona), the temperature decreases
from about 6000 degrees at the base of the photosphere to about 4000 degrees
at a height of about 300 km. It then rapidly increases in the chromosphere
to reach again the value of some million degrees in the Corona. These upper
layers are dominated by the magnetic field, whose evolution gives rise to several
phenomena.

A sketch of the interior of the Sun and its atmosphere is given in fig.1.1.
The interior of the Sun is investigated through helioseismological techniques.

The outer atmosphere is instead investigated through spectroscopic and/or
imaging techniques. In particular, because of the different physical conditions,
different layers of the atmosphere emit at different wavelengths and can there-
fore be observed through different filters. The base of the photosphere is for
instance observed in the IR and visible, while UV and X-rays allow to explore
the chromosphere and the Corona, as shown in fig.1.2.

1.2 The Solar Magnetic Field

The Solar magnetic at the largest scales is roughly approximated by a dipole,
but structures of all spatial scales are present. Phenomena associated with the



www.manaraa.com

Radiative properties of complex magnetic elements 3

Figure 1.1: The interior and the atmosphere of the Sun are ideally separated
into layers. In the core energy is produced by nuclear reactions. The Radiative
and the Convective zones are named after the predominant energy mechanism
transport in these layers. The photosphere is the lowest layer of the atmo-
sphere that can be observed. Above it the chromosphere and the corona host
several phenomena of magnetic origin (in the picture: flares and prominences).
The flare, sunspots and photosphere, chromosphere, and the prominence are all
clipped from actual images of the Sun taken by instruments onboard on SOHO
spacecraft.

evolution of the magnetic field vary on a wide range of time scales (from min-
utes to centuries). The most well known is the 11 years activity cycle during
which the magnetic field changes gradually its polarity. This modification is
accompanied by a gradual increase in the complexity of the magnetic field lines,
that loose their bipolar shape to assume less organized pattern. This complex-
ity is accompanied to the increase in the appearance of phenomena of magnetic
origin, like the number of sunspots and active regions, flares and Coronal Mass
Ejections (CME’s hereafter). Roughly the maximum is reached at the middle of
the cycle. Afterwards a gradual decrease of the number and intensity of these
events is observed. The activity is at the minimum when the bipolar, reversed
polarity configuration is established again. The most used indicators to describe
the solar activity cycle are: the sunspot number, the Ca II K plage Index (de-
rived from the area and brightness of plages, bright features of magnetic origin
observed in CaIIK), and the Radio Flux at 10.7 cm. The solar magnetic field
is not the remnant of the interstellar medium magnetic field, since this would
have been dispersed by diffusion processes a long time ago (Durrant, 1988). It
is instead most likely generated in the interior of the Sun by the interaction
of magnetic field and plasma motion. This process is called the solar dynamo.
Several models have been proposed and many details are still debated (for a
review see Carbonneau (2005)). The Kinematic models prescribe velocity fields
and ask how the magnetic field respond. According to these models the original
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Figure 1.2: Temperature as a function of height in the Solar atmosphere. The
layers at which lines and bands have stronger emissivity are also shown. Obser-
vations at different wavelengths thus allow to investigate different portions of
the atmosphere. From Vernazza et al. (1981).

poloidal field (fig.1.3(a)) is slowly converted into toroidal field by the differential
rotation (the Sun rotates faster at the equator), as shown in fig.1.3(b). This
is call the Ω effect. Both theory and helioseismological data suggest that this
happens in a region between the convective and radiative regions of the interior
of the Sun, at a distance of 0.7 solar radii, called tachocline. In the convective
region the field is transported outward or downward by convective plasma mo-
tions. This motion couples with the rotation of the star, so that, by the Coriolis
effect., in the Northern hemisphere the upflow motions are rotated clockwise
and downward motions are rotated in the opposite sense. As a result magnetic
field emerges in Ω shaped loops twisted in opposite directions in the two hemi-
spheres (fig.1.3(c,d)). The emergence and the twisting of the field are called α
effect. The emerged ropes appear on the surface of the Sun as bipolar active
regions. As the active regions evolve, the area of polarity opposite to the one of
the pole migrates toward the pole (where it cancels), while the other migrates
toward the equator, where it will be eventually cancelled by a region of opposite
polarity (fig.1.3(f)). The migration of the two opposite polarity regions toward
different directions was ascribed by Leighton (1969) to diffusion by convective
motions.

This mechanism provides an explanation to the periodic reversal of polarity
as well as to some observed properties of active regions observed in the pho-
tosphere and chromosphere. Nevertheless, not all the structures of magnetic
origin can be associated with active regions. In particular first observations
revealed that the magnetic field manifests in discrete structures of intense as-
sociated field, surrounded by a substantially field free medium (Zwaan, 1987).
More recent studies have revealed that a low intensity magnetic field permeates
even the so called Quiet Sun (Trujillo Bueno et al., 2004), so that now it is
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Figure 1.3: Solar dynamo sketch. (a) At the minimum of activity the magnetic
field is bipolar. (b) Because of the differential rotation a stronger and stronger
toroidal component is created as the time passes. (c) Magnetic ropes eventu-
ally emerge forming loops whose foot points, because of the Coriolis force, are
twisted.(d) and (e) More magnetic field emerges and spread. These loops form
bipolar regions, with the polarities oriented as shown in (f). The migration
toward the equator and the poles finally causes flux cancellation and reversal of
the polarity of the field. The red sphere represents the radiative region and the
blue net is the base of the photosphere. These two regions are separated by a
convective unstable layer. Adapted from Dikpati and Gillman (2006).

better to address magnetic features as regions of low gas to magnetic pressure
ratio, and the Quiet Sun as regions of high gas to magnetic pressure ratio. Local
dynamo processes, generated by turbulent motions at granular scales, have also
been suggested (Cattaneo, 1999; Lin, 1995; Meneguzzi and Pouquet, 1989).

At photospheric levels the magnetic field is essentially vertical, but, because
of the high pressure stratification, it gradually expands to fill the whole space
in the outer layers of the solar atmosphere. In the chromosphere and corona
magnetic structures are very complex. Arches of different sizes, whose foot
points lie in the photosphere and maybe beneath, connect regions of opposite
polarities. Reconnection events give rise to flares, transitory phenomena that
have associated releases of energy and particles. Some flares have associated
CME’s, that is expulsion of matter from the Corona.

All these events are manifestations of the evolution of the magnetic field and
its interaction with convective plasma. Nevertheless, a complete detailed de-
scription of these phenomena through a unique model or numerical simulation
is not possible, because of the large differences of the physical scales characteris-
tic of these events. The models and simulations nowadays employed to describe
features and phenomena that take place in the corona, are thus very different
from the ones used to describe photospheric features or processes that take place
in the deeper convective layers.

This thesis mainly concerns the studying of features observed at photospheric
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Figure 1.4: Classification of Solar Magnetic Features observed in the Photo-
sphere. From Zwaan (1987).

level. In the following I will briefly describe these features and their character-
istics.

1.3 Photospheric magnetic features

In photospheric layers the magnetic field manifests itself thorough several differ-
ent features. These structures are essentially discrete, although, as mentioned in
previous paragraph, a low intensity magnetic field permeates the whole surface.
Most of these features are classified according to the magnetic flux intensity
they have associated (fig.1.4).

Sunspots appear as dark structures (the umbra) surrounded by a filamen-
tary and less dark annular region called penumbra. They can appear isolated
or in groups and their size and shape can vary considerably. The typical aver-
age magnetic field strength associated with sunspots is 1000-1500 G, but it is
higher in the umbra (1800-3700G) and lower in the penumbra (700-1000G). The
associated strong magnetic pressure and tension inhibit convection making the
structure colder and therefore darker than the surrounding photosphere. The
temperature deficit estimated is about 2000◦K (see for instance Maltby et al.
(1986)). The contrast of sunspots umbra is a function of wavelength, disk posi-
tion and size, even though different authors have reported contradictory results
about these dependences (e.g. Albregtsen et al., 1984; Steinegger et al., 1996;
Walton and Preminger, 2003a). Albregtsen et al. (1984) also measured a varia-
tion of the contrast with solar cycle, but their results have not been confirmed,
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so far, by similar studies.
Magnetic field in sunspots is still the subject of numerous investigations (see

Solanki (2003) for a review). Nevertheless most of the proposed models and
observations suggest the magnetic field to be vertical in the center and more
and more inclined in the penumbra. The bright and dark features observed
in the penumbra are a manifestation of the azimuthal variation of the field.
High resolution observations reveal higher contrast structures in the umbra, the
umbral dots, that have been suggested to be the manifestation of not totally
suppressed convective motion. Radial plasma motion (the Evershed Effect) at
typical velocities of 1-2 km is observed in the penumbra.

Pores have been classified in the past as distinct structures from sunspots,
since they appear smaller, without a penumbra and have associated a less in-
tense magnetic field. Nevertheless, higher resolution observations have revealed
penumbral structures also in pores (usually for pores whose size is larger than
3.5 Mm), thus making the distinction between the two features looser. The
fact that sunspots are formed by the coalescence of pores (Zwaan, 1985) then
suggests they are the same phenomenon observed at different scales.

Magnetic knots, or micropores, have typical sizes comparable to the ones of
granules (1000 km) and appear darker than the surrounding photosphere. They
are abundant in young magnetic active regions, where they contain most of the
flux.

The term faculae is used to address the brightening that surrounds sunspots
and that usually precedes their appearance. The contrast of these features
varies with disk position and wavelength. In white light, for instance, they are
almost invisible at disk center, but the contrast increases of 5%-10% toward
the limb (see for instance Foukal et al. (2004); Ahern and Chapman (2000a);
Lawrence and Chapman (1988)). On the contrary they are visible at disk center
when observed in lines. Faculae are also called plages when observed in chro-
mospheric strong Fraunhofer lines. In these lines the contrast is usually higher
(30 %) and less dependent (or independent) on disk position (see for instance
Ermolli et al. (2007); Walton and Preminger (2003a)). Negative contrast has
instead been reported by measurements in the Infrared (Sànchez et al., 2005;
Wang et al., 1998). Photometric properties also depend on associated magnetic
field intensity (Ortiz et al., 2002) and structure size (Ermolli et al., 2007; Wal-
ton and Preminger, 2003a). Low resolution images show faculae as compact
bright patches. High resolution observations have revealed they are made up of
smaller bright elements, as shown by fig.1.5. Comparisons of images of faculae
with contemporary magnetograms have shown that they have associated intense
magnetic field. Nevertheless this correspondence is not that clear at higher reso-
lution (better than about 1 arcsec), due most probably to the interaction of the
structures with the granular motions. Results shown in this thesis also indicate
that radiative processes might be responsible for this discrepancy.

Network and filigree are technically classified as distinct structures from
faculae, but they are essentially the same phenomenon, that is the aggregation
of smaller magnetic bright elements. Network is located even outside of active
regions (see below) and defines the border of supergranular cells. Its photometric
properties are similar to the ones described for faculae. Photometric properties
of faculae do not change with solar cycle (Ermolli et al., 2007) while controversial
results have been obtained for network (Ortiz et al., 2006; Ermolli et al., 2003).

As stated above, in the photosphere the magnetic field is essentially vertical,
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Figure 1.5: Active region (AR 424, 8 August 2003) observed at different res-
olution and at different spatial scale. The high resolution images show that
both faculae and sunspots are made up of smaller substructures. Faculae are in
particular made up of smaller brilliant elements. Full disk image: CaII K image
from Rome-PSPT archive (2 arcsec/pixel). Inset on the left: 436.4 continuum,
from Swedish Solar Telescope (0.04 arcsec/pixel). Inset on the right: CA II H,
from Swedish Solar Telescope. The two high resolution images were acquired by
G. Scharmer and K. Langhans. The SST is operated on the island of La Palma
by the Institute for Solar Physics of the Royal Swedish Academy of Sciences.

with the exception of penumbrae, where strong horizontal components are mea-
sured. Pores and faculae field lines fan in the outer parts of the atmosphere, at
chromospheric level. High resolution observations have also shown that smaller
magnetic elements are inclined of tens of degrees, most probably because of the
interaction with granular motions. Photometric properties of spots, faculae and
network are investigated through the concept of flux tube, described in detail
in chapter 4. Basically the strong magnetic field associated with the structure
inhibits convection (as already explained for the sunspots) thus lowering the
temperature. The presence of the magnetic field also evacuates the tube by
providing forces that resist the collapse even in a region of low gas pressure.
The reduction of temperature makes the tube more transparent to radiation so
that, for structures whose size is comparable with the mean free path of photon
in the atmosphere, channelling of radiation from the hotter surrounding atmo-
sphere through the tube flanks can occur. As a consequence the structure heats
up. This effect is expected to be larger at higher levels, where the opacity is
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Figure 1.6: Solar calcium K line in quiet and plage regions. Adapted from
Skumanich et al. (1984).

lower because of the density and the temperature stratification. Therefore the
structure results hotter or cooler respect to the external atmosphere at different
heights, thus making faculae to appear darker or brighter than the quiet Sun
when observed at different wavelengths. Heating is not observed in sunspots,
that are too large for the radiative channelling to be effective. The flux tube
model also explains the center to limb variation of the contrast of bright fea-
tures. When observing the tube at disk center, we are observing radiation that
escapes from deeper layers, the tube being evacuated and more transparent than
the ’quiet sun’. Depending on the temperature stratification and on the wave-
length of observation, the contrast is negative, zero or slightly positive (this last
happens if radiative channelling is efficient). When the same structure is ob-
served off disk center, the ’hotter’ flank of the tube is visible and consequently
the contrast increases.

Brightening at chromospheric layers of magnetic features is not solely as-
cribed to the channelling heating described above, since other effects like molec-
ular dissociations and atomic transitions take place. Contrast enhancement due
to emission are observed for instance in the lines of Hydrogen, both neutral and
ionized Helium, the bands of CN. In particular, due to the high opacity of cores
of Hα, Hβ, Ca H and Ca K, observations in these lines show faculae with a
contrast ten times higher than in the photosphere (fig.1.6).

The studying of photometric properties of facular regions is the subject of
this thesis. Both observational and theoretical aspects of this topic are discussed
in more detail in following chapters.

1.3.1 Active regions: formation and evolution

The features described above usually appear together on the solar disk, in struc-
tures that are named Active Regions, at latitudes between + and -45 deg. Active
regions are usually bipolar with the axis that connects the two regions slightly
inclined (up to 15 deg) respect to the east-west direction (fig.1.3). They are
characterized by a wide range of spatial and temporal scales. Larger active
regions usually have associated sunspots and last for months. Smaller active
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regions, with less or no sunspots at all, last for some weeks. As a general rule,
the lifetime is proportional to the magnetic flux at the maximum development
of the region. Regions of the chromosphere and corona that are cospatial with
active regions in the photosphere usually host other features and phenomena
like prominences, flares and CMEs.

Active regions are preceded by magnetic flux emergence which has associated
bright compact faculae. The facular feet move apart and new flux emerges. If
it is enough, pores start forming and then sunspots by their merging. After 10
days most of the flux is emerged and the whole hierarchy of structures (faculae,
knots, pores and spots) is present. The active region is at the maximum. In
the following days sunspots gradually disappear, mainly by fragmentation, and
facular features slowly expand and dissolve into enhanced network.

It has been proposed that the individual small elements that form larger
structures by coalescence, are part of a larger flux tube, that is anchored in the
lower part of the convective zone. The large flux tube fragments when emerges
on the photosphere, but then the small flux tubes tend to come together. Gar-
cia de La Rosa (1987) proposed for instance that sunspots maintain a memory of
the original elements and that when they fragment (during the decaying phase)
they split into the original flux tubes. On the contrary, Parker (1992) proposed
the coalescence to be generated by the attraction between vortices that surround
each magnetic element.

The dispersal of the field is regulated by the turbulent plasma motions, that
tend to dissolve the field by diffusion. Active regions dissolve at a rate that is
slower than the one would expected for a random walk, but faster compared to
supergranular time scales. Flux cancellation also contributes to determine the
properties of active regions.

1.4 Solar Variability and Irradiance Variations

The Total Solar Irradiance (TSI here after) or Solar Constant, is the energy
integrated over the spectrum per second and square meter at the distance of
1 AU from the Sun. In spite of its name, its value varies on different time
scales. In particular, it shows cyclic variations in phase with the solar activ-
ity cycle. Measurements carried out by bolometers on board of spacecrafts,
like ERB/Nimbus-7 (Hickey et al., 1988), ACRIM/SMM (Willson, 1981), SOL-
STICE/UARS Rottman et al. (1981), SARR/ATLAS 2 (Crommelynck et al.,
1995), VIRGO/SOHO (Frohlich et al., 1995), have revealed that these variations
are very small, of about 0.05-0.1% (Frohlich, 2000). Larger variations (about
0.2%) occur at other time scales and are associated with the presence on the
solar disk of active regions (Hudson et al., 1982). In particular the presence of
sunspots reduces the total irradiance received on Earth, while the presence of
plages increases it. At the maximum of the cycle the negative energy contribu-
tion associated to spots is overcompensated by the positive energy contribution
associated to brilliant regions so that the TSI signal is maximum as well. The
physical reasons of the long term variations are not well understood yet. Because
of the correlation of TSI variations with magnetic features on the solar disk,
some authors completely ascribe the variations to the magnetic cycle (Spruit,
1982; Fligge and Solanki, 2000; Krivova et al., 2003; Wenzler et al., 2005). This
view is corroborated by the fact that this correlation is also observed for other
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Figure 1.7: a): TSI over the period 1950-1998. b): Spectral Irradiance. c):
Spectral Irradiance changes between 1989 (solar maximum) and 1996 (solar
minimum). d): Fractional Irradiance change for the period as in panel c). At
shorter wavelengths of the spectrum, Irradiance relative variations are higher
(up to two orders) respect to longer wavelengths. From Hansen et al. (2002).

Sun-like stars (Radick et al., 1998). Other mechanisms have been suggested,
like temporal changes in the latitude dependent surface temperature of the Sun
(Kuhn et al., 1988), structural changes in the convection zone (Balmforth et al.,
1996) or the internal magnetic field (Li and Sofia, 2001), with possible changes
in the solar radius (Sofia, 1998). Nevertheless, none of these latter mechanisms
is supported by strong observational evidence (Foukal et al., 2006).

Quite larger variations respect to the ones listed above are measured when
the analyses is restricted to spectral bands or particular lines, as shown in
fig.1.7. In UV the variations on the solar cycle are of some percents, in EUV of
more than 200% and in X-ray spectral region the flux is 500-1000 times larger
at maximum than at minimum. The TSI and Spectral Solar Irradiance (SSI
in the following) variations have been the subject of numerous studies during
the last twenty years because of their possible relevance for Earth climate and
global warming. A connection between solar variability and Earth climate is
suggested by the striking correlation with solar activity of the temporal varia-
tion of several observables, like the temperatures of the oceans (White et al.,
2003), the Earth stratosphere (Labitzke, 2004) and troposphere (Coughlin and
Tung, 2004). The UV variations are responsible for more than 40% of ozone
variations in the last 120 years and appear to be correlated with cloud coverage
(e.g. Lean et al., 2005). In particular, the fact that to the small ice age that
occurred in Europe in the 18th century corresponded a period of very low solar
magnetic activity, has induced many authors to try to reconstruct past temper-
ature global variations using magnetic activity proxies (like sunspot numbers).
By contrast, the most recent studies do not reproduce such a clear correlation.
Global circulation models, for instance, show that TSI variations are insufficient
to explain the global temperature increases registered over the last 120 years
and indicate other forcing mechanisms (like greenhouse gases concentration) as
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more important (Lean et al., 2005; Foukal et al., 2006). Effects of SSI, especially
UV and IR variations, on global weather are instead still under investigation.
Such a discrepancy between modelling and observations has to be ascribed to
the poor understanding that we have, so far, of the physical mechanisms that
connect TSI and SSI variations to global circulation. Moreover, precise measure-
ments of solar energy output are available only since early 1980’s and past TSI
and SSI variation reconstructions are made under some assumptions. Recon-
structions performed with sunspot number only, for instance, estimate facular
contribution assuming a constant facular brighting-sunspot dimming ratio over
the time. Reconstructions based on other proxies like radio-isotopes (10Be or
14C concentrations) suffer from other uncertainties, since they are not a direct
measurement of solar magnetic activity, but are generated by the interaction
of energetic cosmic rays (whose transport in the heliosphere is effected by the
complexity of the solar magnetic field and strength of the solar wind) with Earth
atmosphere molecules.

These topics thus require further investigation. By contrast, reconstruc-
tions of present TSI variations are rather accurate, since more than 90% of the
measured signal is reproduced. Different models and methods have been pro-
posed, but they are all basically performed by a ’linear combination of two or
more quantities which are taken to represent some portion of the TSI variation’
(Walton, 2005). These quantities are usually derived from photometric (con-
trast) and geometric (area and disk position) properties of magnetic features. In
particular, sunspot area and location are estimated through analyses of full-disk
white light (Lean et al., 1998) or other continua (e.g. Penza et al., 2003) images,
or through magnetograms (Krivova et al., 2003). Because of their lower contrast
in the photosphere, ’bright regions’ contribution is of more difficult estimation.
Usually faculae are identified in the chromosphere, where their contrast is more
pronounced and less dependent on disk position. CaIIK full-disk images (Penza
et al., 2003; Walton and Preminger, 2003b), as well as CaII and MgII emission
lines flux (Frohlich and Lean, 2004) are employed for this purpose. The Irradi-
ance is then reconstructed either by making use of the feature contrast measured
on the images analyzed (e.g. Walton and Preminger, 2003b) or by the use of semi
empirical atmosphere models (Fontenla et al., 1999; Krivova et al., 2003; Penza
et al., 2003). Note that while first reconstructions were basically two-component
models (bright or dark features), more recent reconstructions take into account
of a variety of structures separately (for instance, Fontenla et al. (1999) distin-
guishes among umbra, penumbra, network, enhanced network, faculae, bright
faculae, quiet sun). The contribution of faint bright magnetic features is the
source of the largest error in these reconstructions. According to Walton and
Preminger (2003b), for instance, the coverage and photometric properties of
network remain constant over the solar cycle, so that this component need not
to be considered. On the contrary, other authors (e.g. Fontenla et al., 1999;
Penza et al., 2003; Fontenla and Harder, 2005; Wenzler et al., 2005) include this
component in their models. Similar methods are employed to reconstruct the
SSI at different wavelengths. In this case the agreement of models with observa-
tion is not always good. Accurate measurements of photometric and geometric
properties are thus needed, as well as an improvement of semi empirical models,
which are also based on some measurements of magnetic features contrast.
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1.5 Aim of the thesis

The aim of this thesis is to improve the understanding of bright magnetic fea-
tures observed in the photosphere. In particular I investigate the relation be-
tween photometric and geometric properties of these features. This is accom-
plished by the analyses of full disk images and comparison with results obtained
by numerical simulations. In particular, in the first part of the thesis I describe
measurements of bright features contrast carried out through the Precision Solar
Photometric Telescope (PSPT) located in Rome, Italy, at Osservatorio Astro-
nomico di Roma, and the one located in Hawaii, USA, at Mauna Loa Solar
Observatory. I investigate the Center to Limb variation of the contrast ob-
served in two continua (409.4 and 607.1 nm) and its variation as a function of
structures size. I also investigate geometric properties of these features through
the analyses of their fractal dimension. Finally, a comparison of the measured
contrast and measured complexity is presented. I will show that these kind of
measurements are critically affected by resolution of data employed and that
some results recently presented in the literature should be revisited.

In a second part of the thesis I present the theoretical and numerical in-
vestigation of the problem. In chapter 4 I introduce the concept of flux tube.
The physics and equations that describe the interaction of magnetic field with
convective plasma and the assumptions of different models of flux tubes are
illustrated. I will also show the necessity of models and numerical techniques
for the evaluation of both Convective and Radiative flux, that appear in the en-
ergy equation. A brief review of recent 2D and 3D simulations is presented. In
the fifth chapter I describe the radiative transfer equation and some analytical
solutions presented in the literature. I also describe the Short Characteristic
technique, the numerical method on which the software I developed to solve the
Radiative Transfer equation is based. Since the energy equation requires the
estimate of the Radiative flux, quadrature techniques for the estimate of this
quantity are illustrated. The development of a software for both the solution of
the Radiative Transfer Equation and the Radiative Flux in a 2D plane parallel
atmosphere, have been fundamental steps in the development of this thesis. The
Short characteristic, in particular, allows to estimate the intensity field at the
desired optical depth and for a given view angle. It is thus fundamental for the
investigation of photometric properties of simulated structures. For this reason,
great care was dedicated to the investigation of several numerical aspects that
might introduce spurious effects. The results of this investigation, as well as the
problems related to quadrature techniques, are illustrated in chapter 6. In chap-
ter 7 I describe the models developed, based on the magnetic flux tube concept,
and in chapter 8 I show the results obtained. In particular the variations of
contrast caused by the presence of the magnetic structures in the photosphere
are investigated. Conclusions and future works are drawn in chapter 9.
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Chapter 2

Fractal dimension

estimation of facular regions

In this chapter I show the results obtained by a study of geometric properties
of magnetic features identified in the chromosphere on CaIIK PSPT images.
At this aim, the fractal dimension variations with features size and with solar
activity was investigated. I show that variations with size are critically affected
by spurious effects like pixelization and that variations with time are not clearly
correlated with solar cycle. Part of the work here presented has been developed
in collaboration with Solar Group at Osservatorio Astronomico di Roma and is
also described in Criscuoli et al. (2007).

2.1 Fractals: introduction

The term fractal, coined in 1975 by the mathematician Benôıt Mandelbrot,
comes from the Latin fractus that means ”broken” or ”fractured.” The author
addressed with this term some particular curves and geometrical shapes, like
the Peano curve, the Von Koch snowflake or the Sierpinski carpet, that do not
fit the patterns of Euclidean geometry and were thus regarded at that time as
’monsters’. Mandelbrot developed a new kind of geometry in order to interpret
these ’anomalies’ and showed, in The fractal Geometry of Nature (Mandelbrot,
1982), that they are instead the ’normality’ since many shapes and phenomena
(from the structure of a cauliflower to the stock prices temporal variations) can
be described by this new formalism. Formally he defined fractals as those ob-
jects whose Hausdorff-Besicovitch dimension exceeds the topological dimension
(Mandelbrot, 1975b). I will expand later on this point, when talking about the
fractal dimension. Here is important to notice that this definition is related
to the concept of self-similarity. An object is self-similar if, when observed at
different scales, it has similar appearance. A cauliflower or the decimal metric
system are common life examples. In fig.2.1 is shown the von Koch curve, that
is a fractal curve constructed according to some particular mathematical rules
(Peitgen and Jurgen, 1992). If we take a portion of the curve and enlarge it,
the new portion will appear as the original one, in the same way in which if we
split a cauliflower in smaller and smaller parts, the new pieces will resemble the
whole one. According to self-similarity properties, fractals are classified in the

14
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following categories:

• Exact self-similarity: this is the strongest type of self-similarity; the fractal
appears identical at different scales. Fractals defined by iterated function
systems, like the vonKoch curve, the Sierpinsky gasket or the Menger
sponge, often display exact self-similarity.

• Quasi self-similarity: the fractal appears approximately (but not exactly)
identical at different scales. Quasi-self-similar fractals contain small copies
of the entire fractal in distorted and degenerate forms. Fractals defined by
recurrence relations, like the Mandelbrot or the Julia sets, usually belong
to this category.

• Statistical self-similarity: the fractal has numerical or statistical measures
which are preserved across scales (an obvious measure might be the fractal
dimension, discussed further). Random fractals, like 1/f noise, fractal
landscapes Brownian trees and Diffusion Limited Aggregations, are good
examples of fractals belonging to this category.

In fig.2.1 are shown fractals belonging to these categories. Some fractals can
also present self-similar properties up to a certain scale. This is referred to as
Self similarity at a point. In general, ’real life’ fractals belong to this category.
A cauliflower, for instance, can’t be split infinitely and has instead a minimum
size beyond which its approximate self-similarity is broken, in the same way in
which, while the metric system is self-similar at each scale, a ruler cannot be.

Self similarity is not enough to describe fractal properties. According to
previous definitions, for instance, a line would a be fractal, since smaller and
smaller segments always resemble the original one. But a line is not a fractal,
since, as mentioned before, its Hausdorff dimension equals the topological di-
mension. Mandelbrot expands on this point in his famous article How long is
the coast of Britain? (Mandelbrot, 1967). As was known by geographers, the
length of coast-lines or nation borders L are related to the map resolution G by
the formula:

L(G) = F · G1−D (2.1)

where F is a positive constant and D is also a constant at least equal to unity.
The relation means that, when measured with different rulers, Britain’s coast
results of different lengths, the smaller the ruler the longer the coast. This re-
lation is illustrated in fig.2.2. Here the coast and the ruler lengths are plotted
in logarithmic scales and are fitted by a straight line whose slope is ≈ −0.26.
From relation 2.1 D ≈ 1.26. The same measurement for a circle or a line would
have lead to D = 1. Topologically speaking, this implies that coast lines, as
well as other types of curves, are not ”rectifiable” and the higher is D the more
’fragmented’ the curve appears.
Mandelbrot referred to D as similarity dimension and generalized the discus-
sion to n-dimension structures. He introduced the term ’fractal’ in a subse-
quent work. For fractal objects the similarity dimension, or fractal dimension,
is greater than the topological dimension (for instance 1 for a line) and lower
than the topological dimension +1.
Such definition of fractal dimension is operative and very used in the literature.
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Von Koch curve. An enlargement of a portion of the curve has the same
appearance as the original one. By construction, the self-similarity holds for
infinite enlargements, so that this curve has Exact self-similarity properties.

Mandelbrot set example. When zooming the picture (from left-to right)
images appear approximately the same, but are not identical. This is thus an
example of Quasi self-similarity.

Fractional brownian motion. The curve in the bottom is a blow-up of a
the section delimited by a rectangle in the curve on the top. The two curves
look the same statistically and are thus an example of Statistical self-similarity.
From Vasconcelos (2004).

Figure 2.1: Fractals are classified according to their self-similarity properties.
Here examples from the three categories described in the text are shown.
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Nevertheless there exist many others, as well as different techniques or estima-
tors, to evaluate it. The Box Counting dimension and the already mentioned
Hausdorff-Besicovitch dimension are the most common. To define the first one,
let us consider a closed set X, that we cover with a minimum number N(r) of
square boxes of size r. As we reduce the size r the minimum number of boxes
N(r) scales as 1/rdB . dB is by definition the Box-Counting dimension. More
formally

dB := − lim
r→0

log N(r)

log r
. (2.2)

For fractals dB , if the limit exists, is greater than the topological dimension
and in general is not a natural number. For instance the von Koch curve has
dimension dH = 2 ln 2

ln 3 ≈ 1.26, while its topological dimension is 1. Box Counting
definition is of very simple implementation and is one of the most employed to
evaluate structures complexity. If the set is covered by small sets of varying sizes,
instead of boxes of fixed size, than the limit gives the Hausdorff-Besicovitch
dimension. It can be proved that for self similar sets the self similar, box
counting and Hausdorff-Besicovitch dimensions coincide.

The estimator adopted in this thesis, thoroughly explained in 2.4, is the
perimeter-area relation, that also allows a measurement of the similarity dimen-
sion.

2.2 Fractal dimension estimation of solar mag-

netic features

In 1975 Mandelbrot (1975a) pointed out that turbulent motions generated pat-
terns have a fractal nature. On the Sun the generation of magnetic structures,
as well as their evolution and decay, is determined by the two main processes
through which magnetic field interacts with convective plasma: concentration
and fragmentation as noticed by (e.g. Abramenko and Longcope, 2005). On
one hand, magnetic structures are generated by concentration of field lines
induced by advection of magnetic field by turbulent diffusion. On the other
hand, turbulent motions cause cancellations (of different polarities structures)

Figure 2.2: When measured with smaller and smaller size rulers, the length of
coast of Britain increases. Scatter plots in log scale of coast length and ruler
precision, are fitted by a straight line whose slope is ≈ −0.26. The fractal
dimension is thus D ≈ 1.26.



www.manaraa.com

Radiative properties of complex magnetic elements 18

Figure 2.3: Summary of papers concerning fractal analyses of solar magnetic
features. Studies have been carried out on different kind of data and with differ-
ent estimators (PA:Perimeter-Area; BC: Box Counting; LA: minimum external
box size-Area), so that fractal dimension estimates (right column) are often
discrepant. From McAteer et al. (2005).

and fragmentation. These competitive processes generate magnetic structures
of several sizes that present self similar (in the statistical meaning) properties
(Stenflo and Holzreuter, 2002). Fractal analyses of magnetic structures is thus
a powerful tool to study the interaction of magnetic field with convective sur-
rounding plasma. Investigations carried out during the last 15 years, generally
on solar vector magnetograms, revealed the complexity and self-similar proper-
ties of active regions, but results obtained are widely different depending on the
resolution of the observation and on the technique used for the investigation.
The lack of a unique definition of fractal dimension makes the comparison of
results also very confusing.

Lawrence (1991) studied the ”random walk” of 170 magnetic elements de-
tected on 220 BBSO magnetograms of an active region. He showed that the
motion occurs on a ’fractal’ rather than a 2D geometry and that in the bulk of
the region both fractal dimension D and diffusion coefficient K are lower (re-
spectively 1.3 and 150 km2) respect to the surrounding area (for which they
found D=1.7 and K=310 km2).

Balke et al. (1993) analyzed a few high resolution magnetograms (0.3 arcsec).
They determined the fractal dimension of small structures (areas between 4 and
20 pixels only) by using the relation between the area and the linear size of
the structures. They did not detect any systematic variation of the fractal
dimension with the magnetic threshold between 200 and 900 G and obtained
and average fractal dimension of 1.54. These results were interpreted in terms
of percolation theory, according to which if the concentration of magnetic field
is below a certain threshold, the fractal dimension of the observed clusters of
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elements is 1.56 (Schrijver et al., 1992; Lawrence and Schrijver, 1993).
Nesmes-Ribes et al. (1996) estimated the fractal dimension of facular re-

gions determined from Meudon spectroheliograms (with a pixel size of 1.8 arc-
sec/pixel) obtained in the K1v. Applying three different fractal dimension esti-
mators to structures of sizes larger than the supergranular scales, they obtained
the values 1.60, 1.64 and 1.72. For smaller size features they measured a smaller
dimension, with a minimum of 1.2. Their results were not in good agreement
with the ones obtained by Balke et al. (1993). However, as I will explain in
the following paragraphs, different samples and spatial resolutions can explain
these differences.

The analysis of a very large dataset, based on ≈ 8000 full-disk and ≈ 800 high
resolution megnetograms obtained from April 1996 to June 2002 with SOHO-
MDI instrument, was carried out by Meunier (2004). The geometry of facular
structures of different spatial scales in relation to magnetic field intensity, flare
activity, and solar cycle phase, was investigated in this work. The author found
that while a region complexity generally increases with magnetic field intensity,
there is no clear correlation with flare activity or the solar cycle. Moreover,
the measured fractal dimension was found to increase with structure size (in
agreement with Meunier (1999) and Nesmes-Ribes et al. (1996)), showing a
peculiar change in behaviour near structures of area 550-800 Mm2.

The correlation between active regions fractal dimension and flare activity
was investigated by several other authors. McAteer et al. (2005), by a com-
parison analysis of MDI full disk magnetograms and GOES X-ray data, found
a correlation between active regions fractal dimension and flare number and
intensity production. Gergoulis (2005) and Abramenko (2005) investigated the
correlation of magnetic active region complexity and associated flare activity via
multifractal analyses of few MDI high resolution magnetograms. Particularly,
Gergoulis (2005) employed several complexity definitions and techniques (frac-
tals and multifractals) in order to determine the most suitable to investigate
the correlation. He suggested multifractal analyses as the most suitable, and,
as well as reported by Abramenko (2005), found an increase of multifractality
of active regions during pre-flare phases. Because of the small number of active
regions analyzed, these topics deserve more investigation.

Self similarity was also observed in structures generated by Magneto Hydro
Dynamic numerical simulations. Jansen et al. (2003) compared by means of
fractal analyses the shapes of observed small-scale magnetic structures on very
high resolution observation of the Sun with those of magnetic regions from simu-
lations. Both real and simulated data gave a fractal dimension of about 1.4. The
authors also reported an increase of fractal dimension with the structure size,
similar to the one observed by Nesmes-Ribes et al. (1996), Meunier (1999) and
Meunier (2004). Bushby and Houghton (2005) used fractal dimension estimate
of simulated structures to determine the magnetic flux that best reproduced re-
sults of Balke et al. (1993). They also observed an increase of fractal dimension
with object size.

Table 2.3 summarizes some of the main results obtained in the literature.
Investigations have been carried out on several kind of data sets, for different
solar features and with different techniques. The resulting discrepancies are not
surprising. Other authors already pointed out that several spurious effects can
influence fractal dimension estimations. Both image resolution and projection
affect the correlation, mass function and perimeter-area estimators in studies
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of interstellar molecular clouds (Sànchez et al. (2005), Vogelaar and Wakker
(1994)), and resolution and thresholding effects are important in fractal dimen-
sion estimation of flow patterns in field soil by box-counting methods (Baveye
et al. (1998)). Lawrence et al. (1996) has studied similar effects in multifractal
and fractal measures (box-counting, cluster dimension, threshold set) of solar
magnetic active regions.

In order to investigate the complexity of magnetic features using observations
representative of chromospheric heights, I have analyzed the fractal dimension
of bright features identified in full-disk CaIIK images acquired by the Precision
Solar Photometric Telescopes (PSPTs) at Osservatorio Astronomico di Roma
(OAR) and Mauna Loa Solar Observatory (MLSO). The data analyzed span
the last 6 years and thus allow considerations of variation with the solar cycle.
Among the ones analyzed in literature, because of the image resolution and the
long time span, the dataset of Meunier (2004, 1999) and Nesmes-Ribes et al.
(1996) are the most similar to the one I analyzed. In order to compare the
results with the ones presented by these authors, I thus employed the same
fractal dimension estimator, that is the perimeter-area relation. In order to
validate and discuss the results I have also investigate the sensitivity of the
deduced fractal dimension to the pixelization, the resolution of the image and
the perimeter measure algorithm employed. In particular, I have determined
how these influence the geometric properties deduced for objects of different
sizes, and try to answer the question whether the perimeter-area relation can
be used to study the fractal and multifractal nature of solar magnetic features
as a function of solar cycle. The analyses, the results and their interpretations
are shown in following paragraphs and in Criscuoli et al. (2007).

2.3 Observations, processing and definitions

2.3.1 PSPT data

The bulk of the data I analyzed is from the archive of daily full-disk observa-
tions carried out with the PSPT at Osservatorio Astronomico di Roma (OAR
here after). This was supplemented with data from the PSPT at Mauna Loa
Solar Observatory (MLSO) for consistency and resolution tests. The images
were taken with ”twin” telescopes at the two sites, through interference filters
centered at three wavelength bands (CaIIK line center 393.4nm, fwhm 0.27nm,
blue continuum 409.4nm, fwhm 0.27nm, and red continuum 607.1nm, fwhm
0.46nm for OAR), with a 2048 × 2048 16 bit/pixel CCD camera, yielding a
spatial scale of ∼ 1arcsec per pixel. Images from OAR are binned to half reso-
lution, yielding a final spatial scale of ∼ 2arcsec per pixel. Images from the two
telescopes were independently dark and flat-field corrected and had the mean
center-to-limb variation removed. These pre-processing procedures are slightly
different for the two sets of images. Details are given in Ermolli et al. (2003)
and Meisner and Rast (2002). The images of anyone triplet were resized and
aligned to allow pixel by pixel comparison between filters.

For this study I selected OAR daily image triplets (CaIIK, blue continuum
and red continuum), obtained on 238 different observing days during the sum-
mers (July to September) of 2000 through 2005. I chose images acquired during
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the summer months because these are generally of higher quality. The largest
sample of the images was obtained by co-adding frames acquired with very short
exposure time (usually less than 50 ms). This procedure allows to increase the
photometric accuracy up to 0.5% per pixel. In order to compare results obtained
with the two instruments, I also selected 44 triplets (the best in the CaIIK band
of the day, according to quality criteria described in 2.3.2.) from the MLSO and
OAR archive taken during the summer of 2005. For comparison, MLSO images
were rescaled to match OAR spatial scale images (∼ 2 arcsec per pixel).

Finally I was able to quantify the effects of atmospheric seeing by using
MLSO images acquired at 10 minutes intervals throughout the day, weather
permitting. According to quality criteria explained in next paragraph, I selected
two groups of 27 high and low quality images (one for each day) throughout the
year 2005 (February to October). For this analysis, the full resolution (∼ 1
arcsec per pixel) MLSO data were employed.

2.3.2 Data quality

The geometric properties of solar features extracted from the images are likely
sensitive to the spatial resolution of the image being analyzed. This in turn
depends on atmospheric and instrumental operation conditions during the ob-
servation. To estimate the inherent quality of any given data image I measured
(in pixel units) the width of a Gaussian fit to the limb profile. Small values of
the solar limb width indicate lower instrumental or atmospheric smearing and
thus better quality images. The limb width distributions of our datasets are
asymmetrically shaped with a long tail toward higher values, so that the mean
is not the most probable value. The mean limb profile width of the OAR CaIIK
(binned to half resolution) images analyzed is 2.5 ± 4.0 with a median value of
1.42. That of the MLSO CaIIK images from the summer 2005 is 4.1±0.8 for the
mean and 3.9 for the median (measured on full resolution images), while that for
the OAR images acquired in the same period are 4.0 ± 6.5 and 2.2 respectively
(measured on binned half resolution images). Considering the different pixel
scale of MLSO and OAR images, the two 2005 dataset quality are peaked near
the same value (about 4 arcsec), but OAR dataset contains a higher number of
low quality images.

The MLSO limb width distribution for year 2005 has its maximum at a
value of 3.7 pixels (measure on full resolution images). To study dependence on
seeing condition, images from each day were grouped in two sets: those whose
limb width lied below 0.1σ from the peak, and those whose limb width lied
between 0.8σ and 3.0σ above the peak. From each group, the best and the
worst image were selected, so that I had, for each observing day, two different
quality images. This restricted the analyses to 27 observing days. The mean
limb width obtained are 3.5± 0.2 and 4.9± 0.3 for high and low quality images
respectively.

2.3.3 Feature identification

Bright features were identified in the CaIIK images using two methods based
on a combination of pixel intensity and connectivity. As explained in previous
chapter, because of the link between CaIIK brightness and magnetic flux inten-
sity, these features are assumed to represent small magnetic structures, but this
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assumption plays no role in their identification.
The first identification method is analogous to that used by Meunier (2004),

taking into account intensity alone and based on fixed thresholding values.
While Meunier (2004) employed thresholding on magnetograms, I select pixels
whose intensity contrast 1 in the CaIIK images exceeds a given value. Similarly,
sunspots and pores were identified in the blue continuum images by selecting
those pixels whose intensity was below a given threshold. These thresholds
were set to exclude network while keeping active regions, including umbral and
penumbral pixels.

The second identification method employed takes into account both pixel
intensity and connectivity. It is described in chapter 3 and I will refer to it as
Ktr.

For the subsequent fractal analysis, I produced binary images from each
triplet processed, in each of which pixels satisfying the identification criterion
above have a value of one, with all other pixels set to zero. To reduce distortion
due to projection effects, analysis was restricted to structures near disk center,
µ > 0.8, where µ is the cosine of the heliocentric position angle. Addition-
ally, isolated bright points were removed from consideration by discarding all
structures of area less than 10 pixel2.

2.3.4 Perimeter and area evaluation

There are several ways to define and evaluate the perimeters and areas of fea-
tures in a binary image (Gonzalez and Woods, 2002), and thus characterize
the independent structures. The goal is to define, detect, and count the pixels
which constitute the feature edges. For this study I considered three methods,
and evaluate the errors associated with them.

In the first method, I defined border pixels by row and column, identifying
for each the pixel for which the binary value changes. The perimeter was then
evaluated summing the external sides of the border pixels, so that for example
an object made up of 1 pixel has an area of 1 and a perimeter of 4, while one
made up of two pixels has an area of 2 and a perimeter of 6 or 8 depending on
the pixels’ relative positions.

In the second method, I applied the Roberts operator (Turner et al., 1998)
to the image in order to identify border pixels and defined the perimeter as the
sum of the all pixels whose value is not zero. Using this method, an object of 1
pixel has a perimeter of 4 and an object of two pixels has always perimeter 6,
independent of the relative positions.

In the third method, pixels are identified as border pixels if they are con-
nected from between 1 and 7 of the neighbouring 8 contiguous pixels. The
perimeter is the sum of the selected pixels, so that an object 1 pixel in area has
a perimeter of 1 and an object of area 2 has a perimeter of 2, independent of
the pixels relative positions.

I refer to these three methods as Sides, Roberts and 8-cont respectively.
Nevertheless, only the results obtained using the first method are included in
the body of this thesis. The reasons for this are discussed in 2.7.1 and in the
Appendix to this chapter.

1
Ic =

I−I0

I0
, where I is the intensity measured at each pixel and I0 is that representative

of the quiet sun and obtained by a fit to its center to limb intensity variation.
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Figure 2.4: Perimeter (in units of pixel) and Area (in units of pixels square) in
logarithmic scale of detected structures on OAR PSPT data taken during sum-
mer 2002. Continuous line is the fit to the whole set of data (D = 1.354±0.005).
Points at area greater than about 1000 pixels square are better approximated
by a higher slope line. Horizontal line is the area window width over which d1
is estimated.

2.4 Fractal Dimension Estimator: The Perime-

ter Area relation

Several definitions of the fractal dimension of two-dimensional structures and
corresponding techniques for its estimation exist (Turner et al. (1998); section
2.1 this thesis).

If a structure is self-similar, its perimeter L and area A display a power-law
relation:

L ∝ Ad/2 , (2.3)

where d is the fractal dimension. With this definition, 1 ≤ d ≤ 2 and d=1 for
non-fractal structures.

I estimated d using two methods. In the first I performed a simple linear
fit to the logarithm of the perimeters and areas measured for structures of
different sizes; I indicate the fractal dimension so obtained as D. In order to
investigate the size dependence of the fractal dimension estimated in this way,
the fit is performed over the entire data set or, when specified, imposing a
minimum threshold area. In the second I adopted a method first proposed
by Nesmes-Ribes et al. (1996) and later employed by Meunier (1999, 2004), in
which perimeter and area values are averaged over bins in area, each of width
∆ log A = 0.05 and the fitting is done on these averages for a series of overlapping
windows of constant width ∆ log A = 1.5, producing a measure of d which is a
function of A. I indicate the fractal dimension estimated in this way as d1. For
both methods linear fits were performed by a chi square minimization, and the
associated error is the standard deviation of the fit (Press et al., 1994). The
relation between the two estimators and their meaning is illustrated in fig. 2.4,
that shows the perimeter-area relation for structures selected in OAR-PSPT
images. The straight line is a linear fit to the points. It is evident that points
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Figure 2.5: Fractal dimension d1 versus area of bright features identified on cal-
cium images (∼ 2arcsec/pixel). Full circles: summers 2000-2005 OAR-PSPT.
Open triangles: summer 2005 MLSO-PSPT. Full triangles: summer 2005 OAR-
PSPT. d1 increases fast with object size at area smaller than 2000 Mm2. For
larger areas, a plateau is observed for summer 2005 OAR and MLOA data, and
a slow rise on the 2000-2005 OAR dataset.

OAR2000 − 2005 OAR2005 MLSO2005
1.337 ± 0.002 1.307 ± 0.003 1.307 ± 0.004
1.64 ± 0.02 1.53 ± 0.07 1.54 ± 0.09

Table 2.1: Fractal dimension D estimated for features selected on OAR-PSPT
and MLSO-PSPT CAIIK images. First row: fractal dimension D considering
the entire area range structures. Second row: fractal dimension D considering
only structures larger than 2000 Mm2.

do not lay on a single line, but rather on a curve. One is thus tempted to
measure the tangent to the curve as a ’local’ measure of the fractal dimension.
This is what the measure in d1 employed in the text does. The measured d1,
as well as the area at which it becomes constant, are functions of the window
size.

When using this estimator, is important to keep in mind that any fractal
estimate requires the autosimilarity to be valid on some orders of magnitude
(Baveye et al., 1998) (the area range ∆ log A =1.5 adopted for d1 in this and
in other works is therefore in principle too small). If this requirement is not
satisfied, as I will show in the following for solar faculae, structures cannot be
classified as fractals and the perimeter area relation should be regarded as an
indicator of the geometric properties but not of self similarity.
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Figure 2.6: Temporal variation of the fractal dimension d1 versus area for fea-
tures identified on OAR-PSPT calcium images. The bar on the left represents
the largest error bar, obtained for the largest areas for year 2004. At area
smaller than about 1000 Mm2 all the curves overlap, while differences (not
clearly correlated with solar cycle) are observed at the largest areas.

2.5 Results

2.5.1 Fractal dimension and feature size

Figure 2.5 shows the variation in fractal dimension d1 of the identified chromo-
spheric features as a function of their size, as derived from the OAR and MLSO
PSPT CaIIK rebinned data using the second identification method (Ktr) de-
scribed in 2.3.3. The results obtained from three data sets are shown: the full
2000-2005 OAR period, the single 2005 year OAR data, and the single year 2005
MLSO data. For all data sets, d1 increases with object size, increasing faster
for structures of smallest areas and becoming almost constant at the largest
scales. The three curves overlap for structures of area less than about 1000
Mm2, corresponding to about 500 pixel2. For objects of size greater than about
1000-1500 Mm2 the 2005 OAR and MLSO data both show a plateau in the
measured fractal dimension. Somewhat surprisingly, this plateau is less evident
when analyzing structures from the full 2000-2005 OAR data set. The fractal
dimension deduced over this longer period continues to slowly increase even at
the largest scales.

Table 2.1 shows the value of D obtained from the different data sets when
a single fit to the perimeter area relation made over structures of all sizes (top
row) or only those of area greater than 2000 Mm2 (bottom row), the threshold
being suggested by trends observed in fig.2.5. In agreement with d1 estimates,
the fractal dimension D is reduced by the inclusion of the small and apparently
less complex regions.
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Figure 2.7: Temporal variation of the fractal dimension D versus area for se-
lected OAR-PSPT calcium images and for different area range. Error bars in
the case of fits performed on the whole dataset (circles) or at smallest objects
(triangles) are smaller then the symbol size. Results obtained for the largest
area are in good agreement with results obtained by d1 estimator (fig.2.6).

2.5.2 Temporal variation

Figure 2.6 shows the variation of fractal dimension d1 with both feature size
and time for the six year OAR period analyzed. For sake of clarity, only the
largest error bar (belonging to the largest area objects of year 2004) is shown
on the plot. The fluctuations in the other values shown are generally smaller
than the largest differences observed among the years. I find that the variation
in fractal dimension does not show a clear correlation with solar cycle over the
period analyzed (the descending phase of Solar Cycle 23). The values show
large year to year variations for large structures, with the maximum and the
minimum values measured for 2002 and 2005 respectively. The reliability of
the 2005 values are supported by the nearly identical results obtained from the
independent OAR and MLSO measurements (Tab. 2.1, Fig.2.5). The other
years show a plateau value at about 1.6, although in the area range 2500-7000
Mm2 year 2000 has a mean value of about 1.65. Note that if we restrict the
analyses to the area range 2500-7000 Mm2 then a weak trend with the last
cycle, that showed a double activity peak in 2000 and 2002, is observed. Figure
2.7 shows the temporal variation in D for three different area ranges. In this
measure a small trend with solar cycle is observed when the entire structure
size range is included in the fit. When fit is performed on the largest objects,
the highest fractal dimension is measured for year 2002, and the lowest for year
2005, and similar values are measured for the other years, in agreement with
results obtained for d1. For smaller magnetic regions, again the maximum is
observed in 2002, but a minimum is found for year 2004 data.



www.manaraa.com

Radiative properties of complex magnetic elements 27

2.6 Comparison to previous results

2.6.1 Fractal dimension and structure size

Since the work of Roudier and Muller (1987) the fractal geometry of structures
found in images of the outer layers of the solar atmosphere has been investi-
gated by a number of authors. Both magnetic features, at moderate to high
spatial resolution, and non-magnetic features associated with plasma motions
have been studied. In order to ensure a meaningful comparison, I will only
compare the results I have found here to previously published results for active
regions investigated by the perimeter-area estimator.

In agreement with previous results, I find a fractal dimension that increases
with feature size, from a minimum value of about 1.2, to an approximately con-
stant value of 1.5−1.7 for structure areas greater than ∼ 1000−2000 Mm2. This
range in d1 agrees well with measurements by Nesmes-Ribes et al. (1996), but
not with those reported by Meunier (1999, 2004), who found generally a higher
minimum value (around 1.4). From the analysis of both real and simulated
data I know that the minimum value measured is somewhat dependent on both
the identification method employed and the image resolution. The higher min-
imum value reported by Meunier (1999, 2004) may be a consequence of image
resolution (see 2.7.2), as the full-disk MDI data she analyzed are unaffected by
atmospheric degradation. The plateau in d1 beyond object sizes of 2000 Mm2

also agrees with previous results, but this time more so with those of Meunier
(2004) and less so with Nesmes-Ribes et al. (1996), who found the plateau to
occur already for structures of size > 300 square-pixels (corresponding to about
500 Mm2). Tests with both real and simulated data suggest that this difference
may lie in the area range over which the fit for d1 at each point was made, a
value not quoted by Nesmes-Ribes et al. (1996), but taken in our study to be
∆ log A = 1.5 in agreement with that used by Meunier (2004).

An increase of fractal dimension with magnetic feature size was also ob-
served by Jansen et al. (2003). They studied fractal dimension of magnetic
features analyzing high resolution (approximately 0.4 arcsec) magnetograms ac-
quired with the Vacuum Tower Telescope and synthetic images obtained through
MHD numerical simulations. They found D = 1.38 ± 0.07 on synthetic data,
and D = 1.21 ± 0.05 on real data, corrected to D = 1.41 ± 0.05 when taking
in to account resolution effects. Note that my estimates, D ∼= 1.3 (fit on entire
area range), are in between these last two values. Their scatter plots showed a
deviation from these fits at log(A/pixel2)>2.5 (corresponding to 315 pixel2) for
both real and simulated data, despite the differing pixel scale of the two data
sets (∼ 72 km for real data and ∼ 21 km for simulated ones), suggesting that
this change is not related to the physical scale of the object but rather to the
image scale. Fits to objects whose areas was larger then this threshold gave
D = 1.47 (value not corrected for resolution effects) and D = 1.9 for real and
simulated objects respectively.

2.6.2 Temporal variation

Meunier (2004) performed a time-dependent analysis, evaluating the fractal di-
mension d1 variation with object size for three different periods: minimum,
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ascending and maximum phase of the current solar cycle. A correlation with
solar activity for structures of size ∼ 1000 Mm2 was reported, with the highest
fractal dimension being measured during the cycle maximum period. Larger
structures (2000-7000 Mm2) were found to have a higher fractal dimension dur-
ing the ascending phase of the cycle rather than at cycle maximum. Variations
were of the order of few per cent. The same trends were found for estimates of
D, but with larger amplitude variations. If I restrict my analyses to the area
range 2000-7000 Mm2, I instead find a little correlation of d1 with solar cycle,
the highest values being measured for years 2000 and 2002, and the smallest for
2005. The amplitude of the variations in my data is slightly higher, the largest
yearly variation measured over the six year period being of order 10%. The
trend at moderate sizes (1000 Mm2) is not observed.

2.7 Discussion of fractal dimension estimation

Assessment of the fractal dimension of features in digitalized images requires a
series of operations:

• Image segmentation to isolate regions of interest,

• Edge identification in the resulting bi-level images,

• Perimeter and area measurement of structures so identified,

• Fractal dimension evaluation using these measures.

Each of these steps introduces a certain degree of arbitrariness which influences
the result. Moreover, the results are sensitive to intrinsic differences between
image sets, unrelated to the geometric properties of the features they capture.
In this section I focus on the effects of edge identification technique, pixelization
and resolution by the analyses of synthetic images of objects whose fractality
is known: non-fractal objects, the von Koch curve, and objects obtained by
fractional Brownian motion. Seeing effects are further investigated by the anal-
yses of MLSO PSPT data. For clarity’s sake, in the following I present the
main results obtained by the tests, while a further description is given in the
appendix.

2.7.1 Perimeter definition and pixelization effects

To study the influence of the perimeter finding algorithm, I examined the em-
pirical dimension of non-fractal objects as a function of their size. The three
different perimeter-area identification techniques (described in 2.3.4) were ap-
plied to three geometric shapes (squares, right triangles, and circles). In the
absence of error, all three methods should yield a value of one since the objects
are non-fractal, but because of image pixelization, fractal dimensions greater or
lower than one were measured.

I found that errors in fractal dimension evaluation of regular structure are
greatest for objects of small size but persist to surprisingly large scales for both
D and d1. In d1 estimations, errors of less than 5% are achievable for object
sizes greater than some hundreds-1000 pixel2, but for circular objects, which
can not be grid aligned, the error never drops below 1%, independent of the
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Dth D ǫ
fBm 1.8 1.516 ± 0.001 16%
fBm 1.6 1.413 ± 0.001 12%

vonKnoch 1.26 1.310 ± 0.002 −3%

Table 2.2: Theoretical fractal dimension Dth and measured fractal dimension D
for the studied objects and the relative error ǫ = (Dth − D)/Dth. Pixelization
errors increase with increasing structure complexity.

perimeter measure employed. This is true even for object sizes exceeding 5000
pixel2. For any given size object D is significantly closer to its expected value
of 1 than is d1. This is because the evaluation of D in the perimeter-area fit is
performed over all points above a minimum size. This includes the large objects
not included at small scales in the the evaluation of d1. Therefore, the object
size threshold above which the error is lower then 5% occurs at lower scales, but
is not usually less then some hundred square pixels.

The origin of these errors is in the impossibility of representing on a rectangu-
lar grid curves or non-grid aligned lines. This causes the area and the perimeter
to scale differently respect to what is expected for non fractal objects. For
instance, in the case of a right triangle whose two sides are grid aligned, the
overestimation of the hypotenuse leads to the overestimation of both perimeter
and area. It can be shown (see appendix) that, because the relative error in
the perimeter estimation is not size dependent, while the relative error in area
estimation decreases with increasing object size, the estimated fractal dimension
of right triangles is always overestimated.

No error was measured when estimating fractal dimension of grid aligned
squares with the first method explained in par.2.3.4, so that in the following I
present results obtained only with this technique.

The analysis described above was also applied to fractal structures: the
von Koch snowflakes (Peitgen and Jurgen, 1992) and fractional Browian motion
(fBm) images (Turner et al., 1998). For the first object, whose fractal dimension
is ∼ 1.26, I produced snowflakes up to level 6 of different sizes (see Appendix)
and studied their perimeter and area scaling. For fBms (see Appendix) I created
two sets of 150 images of expected fractal dimensions 1.8 and 1.6 respectively.
Each fBm image was segmented with seven different thresholds (Turner et al.,
1998) and perimeter and area of the structures selected by the different thresh-
olds were combined to study the fractal dimension.

In fig.2.8 the measured dimension d1 is plotted as a function of object size
for von Koch snowflakes of level 6. The fractal dimension increases with object
size from a minimum value, in this case 1.15, to an almost constant value ap-
proximating the theoretical one, over the size range 1000 to 5000 pixel2. Note
that the plateau value, about 1.34, exceeds the one expected theoretically. This
reflects the overestimation of the snowflake perimeter inherent in the perimeter
measure algorithm employed, as discussed previously for simple non fractal tri-
angle. A rise of fractal dimension with object size was also observed for fBm
images, and is surprisingly reminiscent of that found for real solar structures.
The estimated fractal dimension of fBm synthetic structures at the largest ar-
eas was lower than the expected theoretical one (see appendix to this chapter).
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Figure 2.8: d1 evaluated for von Koch snowflakes of level 6. Likewise non fractal
objects and real data, d1 increases with object size and reaches a plateau at
areas ≥ 1000 pixel2. The plateau value, about 1.34, is an overestimate of the
snowflake fractal dimension (see text).

Measurements of D are similarly affected by pixelization at small scales, with
more complex structures harder to resolve and thus showing greater measure-
ment error in the deduced fractal dimension, as shown in table 2.2.

Both regular and fractal objects show similar pixelization induced errors in
the fractal dimension estimation. These effects are greater at smaller areas,
where the lack of resolution causes the objects to appear round, thus both d1
and D increase rapidly with object size for object areas less than ∼ 500− 1000
pixel2 and some hundred pixels square respectively. For objects of larger area D
and d1 increase more slowly, but show deviations from the expected theoretical
value reflecting how the structures map onto the pixel grid.

I thus suggest that the minimum object size thresholds (usually about some
tens of pixel2) applied in previous works (e.g. Vogelaar and Wakker (1994)) are
insufficiently conservative, with residual pixelization effects significantly influ-
encing the final results even for objects of ∼ 1000 pixel2.

2.7.2 Resolution and seeing effects

The fractal dimension estimate of solar features depends on the resolution of
the images analyzed. Resolution is determined not only by the detector pixel
size (image scale), but also by the aperture of the telescope, any instrumental
aberration, and, for ground based instrumentation, the distortion introduced
by atmospheric turbulence (seeing). Thus the pixel scale and the resolution are
not the same. To evaluate the effects of resolution on the estimation of fractal
dimension, I analyzed the scaling of d1 and D with area after convolving von
Koch snowflake and fBm images with Gaussian functions of different widths. I
obtained, as one might have expected, a decrease in both d1 and D accompa-
nying the increase of smoothing. Table 2.3 of D (fit over the entire perimeter
area range) shows also that the smoothing effects become more important as
the structure complexity increases.

A Gaussian function is a rough approximation to seeing and instrumental
aberration Point Spread Function in real images. Moreover, seeing is a time
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Dth D Dsm ǫ
fBm 1.80 1.516± 0.001 1.366± 0.001 9.9%
fBm 1.60 1.413± 0.001 1.303± 0.001 7.8%

von Koch 1.26 1.310± 0.002 1.273± 0.002 2.8%

Table 2.3: Fractal dimension measure for different fractals, before D and after
Dsm smoothing by convolution with a Gaussian of fwhm=2, and the relative
error ǫ = (D − Dsm)/D. Note that to distinguish resolution from pixelization
induced effects, the error is evaluated respect to D and not to Dth.
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Figure 2.9: Facular fractal dimension estimated on the two different full resolu-
tion MLSO quality sets described in the text. When the estimation is carried out
on images less affected by seeing degradation, the measured fractal dimension
is higher.
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dependent phenomenon, so that images acquired at different times are affected
by different degradation. In order to investigate directly the effect of variable
seeing on the computed fractal dimension of structures in real data, I examined
full resolution PSPT images from MLSO after selection based on the quality
criteria described in 2.3.2. Images were segmented with the first technique
explained in 2.3.3. In agreement with results obtained with synthetic data, fig.
2.9 shows that a real decrease in resolution resulting from degraded observing
conditions leads to an underestimation of feature’s complexity at all scales.

2.8 Results interpretation

I have shown that pixelization and resolution affect the fractal dimension deter-
mined by the two estimators d1 and D. Understanding these effects is essential
to the interpretation of the results obtained from OAR and MLSO PSPT images
as well as those previously reported from studies carried out with similar tech-
niques on full-disk observations. Pixelization errors occur at all scales, but are
generally more important for smallest area objects. This causes the estimated
fractal dimension to increase rapidly with object size and become almost con-
stant at areas larger than a certain threshold, that I estimated to be ∼ 500−1000
pixel2 for d1 and some hundred pixel2 for D. Seeing induced image degradation
smooths edges making structures appear rounder, resulting in a reduced fractal
dimension. This effect is expected, on the basis of synthetic fractal data, to be
more important for more complex objects.

I thus suggest that the rise of d1 with object size observed in PSPT data, as
well as for example in Meudon spectroheliograms (Nesmes-Ribes et al., 1996)
and MDI magnetograms (Meunier, 1999, 2004), is most likely an effect of im-
age pixelization, rather than a signature of an intrinsic multifractality of active
regions. Pixelization may also likely be the cause of the ’break of similarity’ ob-
served by Jansen et al. (2003), the break occurring at the same scale (measured
in pixel2) for both real and simulated images, in spite of the different physical
scale magnetic structures they studied. The break also occurred at the same
pixel area suggested by my simulations.

For larger objects, fractal dimension estimate is most affected by seeing.
The values measured for large scale structures in the PSPT observations (1.5
to 1.7) are therefore likely an underestimate of the real value. Note that MDI
magnetograms, while not affected by seeing, are slightly defocused, so that the
resolution is twice that of the pixel scale (Scherrer, 1995). One thus expects
results obtained with these data sets to be also an underestimate of the real
value.

A study of the fractal geometry of solar active regions and its variation with
the magnetic activity cycle is thus feasible if it focuses only on large features,
employs a constant segmentation technique throughout, and utilizes data of
consistent high quality. The OAR PSPT images analyzed over a period of six
years marginally meet these requirements, and so the observed variations in time
(fig.2.6) may be significant. They do not show, however, a clear correlation with
the solar cycle. The variations appear to be dominated by size distribution of
the features examined, which in turn weights the perimeter-area fit (this is true
especially for D evaluated on the entire area range).

It is important to notice that, as demonstrated by Baveye et al. (1998)
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for the box counting method, pixelization effects can influence other fractal
dimension estimators as well, and careful quantitative measure of the effects
for each measure employed is essential to the interpretation of the results. I
have not addressed this problem in this work and leave also this issue for future
research.
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Chapter 3

A study of faculae

photometric properties

In this chapter I show the results obtained by a study of photometric properties
of magnetic features identified in the photosphere and chromosphere on Blue,
Red and CaIIK PSPT images and on MDI magnetograms. I investigate the
variations of contrast measured in the three wavelengths respect to disk position
and features size. The effects of segmentation technique employed to identify
features on images and the seeing induced degradation are also investigated.
Results are compared with the ones presented in the literature. Most of this
work has been developed in collaboration with Solar Group at Osservatorio
Astronomico di Roma and is also described in Ermolli et al. (2007).

3.1 On the importance of magnetic features con-

trast measurements

The study of the photometric properties of faculae, the positive contrast features
observed in the solar photosphere that have associated high magnetic flux (see
chapter 1) is important for several reasons.

The measurements of the contrast of these features at different disk positions,
observed at different wavelengths, has been successfully employed to reproduce
space based measurements of Solar Irradiance variations (Foukal and Lean, 1988;
Chapman et al., 1996; Lean et al., 1998; Walton and Preminger, 2003b; Penza
et al., 2003; Fontenla et al., 2004; Wenzler et al., 2005). These reconstructions
differ from author to author for the number of structures considered, the models
assumed and the kind of data and techniques employed to measure features
properties. They can reproduce more than 90% of the Irradiance variations
observed. The residual variations have been variously ascribed, among other
hypotheses, to internal structural changes of the sun (Balmforth et al., 1996;
Sofia, 1998; Rozelot et al., 2004), to variations of properties of features not
usually taken into account like the network (Caccin et al., 1997; Fligge and
Solanki, 2000; Wenzler et al., 2002), or to inaccurate measurements of bright
features photometric properties (Fligge and Solanki, 2000; Ortiz et al., 2002).

Measurements of photometric properties of bright magnetic features are also

34
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Figure 3.1: Center to Limb variation of facular contrast measured at different
wavelengths by different authors. Squares: 5250Åfrom Frazier (1971). Crosses:
5750Å from Auffret and Muller (1991). Diamonds: 3860Å and 5250Å from
Wang and Zirin (1987). Triangle: 5250Å from Taylor et al. (1998). Plus:
6264Å from Lawrence and Chapman (1988). The thick curves without symbols
represent semi empirical models evaluated at 386nm (dotted line), 525nm (solid
line) and 575 (dashed line). From Unruh et al. (2000).

essential to the validation and improvement of semi empirical atmosphere mod-
els (Fontenla et al., 2004; Penza et al., 2004), flux tube models and MHD sim-
ulations (Fligge and Solanki, 2000; Keller et al., 2004; Steiner, 2005a). These
latter are discussed in detail in chapter 4.

In spite of the fact that measurements of the contrast of faculae and its vari-
ation on disk position started more than 60 years ago (as discussed in Solanki
(1993)), results obtained in the literature are wide and controversial. Fig. 3.1
shows for instance some center to limb variation measurements of facular con-
trast obtained by different authors (see also fig. 3.8 in this chapter). At disk
center, negative, zero or positive contrast has been reported. It increases toward
the limb. In some cases a maximum has been observed at positions between
µ = 0.4 and µ = 0.2, where µ is the cosine of the heliocentric angle. In other
cases, a monotonic rise is observed. Discrepancies in the results are partially
due to physical reasons, the contrast being a function of wavelength at which
the structures are observed, their size and the associated magnetic field (e.g.
Ortiz et al., 2002; Walton and Preminger, 2003a). But other factors like instru-
mental resolution, variable seeing and image reduction and analyses techniques
can also play an important role (Fligge and Solanki, 2000; Ermolli et al., 2007).

In order to contribute on this topic, in collaboration with the Solar Group
of Rome Observatory, I analyzed a long temporal dataset of full-disk images
and magnetograms. We investigated the dependence of Center to Limb Vari-
ation (CLV) of magnetic selected regions on several observational constrains,
like spectral range, spatial resolution and activity level, as well as the method
employed to select structures on images. Results obtained by this analisys are
summarized in the following. More details are given in Ermolli et al. (2007).
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3.2 Observations and data reduction

3.2.1 PSPT data

The bulk of the data we analyzed is from the archive of daily full-disk obser-
vations carried out with the Precision Solar Photometric Telescope (PSPT) at
Osservatorio Astronomico di Roma (OAR). This was supplemented with data
from the PSPT at Mauna Loa Solar Observatory (MLSO) for consistency and
resolution tests. Images characteristics and data reduction procedures have been
already described in previous chapter.

For this study we selected OAR daily image triplets (CaIIK, blue contin-
uum and red continuum), obtained on 291 different observing days during the
summers (July to September) of 1998 through 2005. The largest sample of
the images was obtained by co-adding short exposure frames, as explained in
paragraph 2.3.1. In order to evaluate resolution degradation effects induced by
atmospheric seeing, single frame images were also analyzed.

In order to take investigate seeing, instrumental and image calibration ef-
fects, a sample of 42 images taken during summer 2005 (July to September) at
MLSO, was also analyzed. For each observation day, the best quality image,
according to criteria explained in chapter 2, were selected.

Finally, we analyzed MDI full-disk magnetograms (Scherrer, 1995), selected
from those available in the SoHO archive (http://soi.stanford.edu/data/) during
the months between July and September from 1999 to 2005. There are no MDI
observations for the same months in 1998, due to SoHO spacecraft problems.
Among all the data available, we had to search for the full-disk magnetograms
acquired almost simultaneously to the Rome PSPT images. The analyzed data
set consists of 237 magnetograms, recorded during 112 days spread over the
period described above. We tried to maximize the number of usable MDI data,
but we found difficulties in obtaining magnetograms close in time to the PSPT
observations. In all the analyzed images, MDI and PSPT data were recorded
within 10 min from each other.

The MDI data provide a measure of the line-of-sight component of the mag-
netic field averaged over a 2 ×2 arcsec resolution element. We mainly used
single magnetograms acquired with 30 s integration time, on which center to
limb variation of noise level was estimated by computing the standard deviation
on 40× 40 pixels running box. We have also analyzed two samples of magne-
tograms acquired during the year 2000, with 30 s and 300 s integration times, as
well as averages of single magnetograms, so as to evaluate how much the results
are affected by the reduction of the data-noise level. Results obtained by this
last analysis are presented in (Ermolli et al., 2007).

3.2.2 Magnetic regions identification technique

Five different magnetic regions identification techniques were employed in order
to study the dependence of results on this issue. In brief, the methods are the
following: 1) a thresholding of CaII K contrast images, with the threshold value
evaluated by an iterative technique, as suggested in Nesmes-Ribes et al. (1996)
(NR, hereafter);2) thresholding of CaII K contrast images, with the threshold
value being a function of heliocentric angle, as suggested by Ahern and Chapman
(2000b) (CH, hereafter); 3) structures are singled out on CaII K images by
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Figure 3.2: Examples of the results obtained by the processing of images ac-
quired on June 26 2000. From the left, top: Rome PSPT CaII K image and
mask image obtained by the NR method; middle: mask images obtained by the
CH and the Ktr methods; bottom: mask images obtained by the the B-R and
the Mag methods. Gray pixels represent quiet sun, black pixels spots and pores,
white pixels the bright magnetic regions selected for the analysis.
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thresholding, size and connectivity criteria (Ktr); 4) thresholding of color image
obtained by the difference of blue and red bands images (B-R); 5) thresholding
of magnetic signal measured on MDI magnetograms (Mag).

Through the different methods applied, we obtained five binary images with
masks of the identified facular regions for each day. We excluded from these
masks all the pixels whose contrast on the corresponding PSPT red continuum
images was below the 3σ of the average contrast of each image. In this way,
possible isolated dark pixels were also removed from the identified features. An
example of the regions selected with the different methods is given in fig. 3.2.
Each region is then labelled and the heliocentric angle of its barycentre evaluated
in order to study the dependence of the contrast on the position on the disk and
the region size.

For each PSPT band, we took into consideration the maximum contrast
and the mean contrast of each region. In order to reduce quiet sun center to
limb variation effects, the contrast is defined as the ratio between the pixel
intensity (or the mean intensity of pixels belonging to the region) and the mean
intensity of quiet sun (as determined from a global center to limb fit) at the
same heliocentric angle minus one. In formula

Cλ(µ) =
If
λ (µ)

Iq
λ(µ)

− 1 (3.1)

where Cλ(µ) is the contrast at a certain wavelength and disk position, I is
the measured intensity and the superscripts f and q indicate facula and quiet
sun respectively.

Finally, in order to exclude enhanced network and bright points, structures
whose size was lower than 10 pixels squares were rejected from the analyses.

3.3 Results

3.3.1 Center to Limb variation

The physical mechanisms that determine the photometric properties of magnetic
regions in the photosphere are different from those in chromosphere (see chapter
1). Results obtained on CaII K images (that sample the chromosphere) and on
Blue and Red images (that sample the photosphere) are thus quite different.

The five methods single out chromospheric regions that are characterized
by different average contrast values, as shown in fig.3.3. The relative difference
between maximum and minimum values obtained, which are achieved with Mag
and NR, respectively, is about 15% in the PSPT CaII K band. The contrast
values of CaII K features identified by NR, CH, and Ktr, as well as the deviation
in measured values, do not show a disk position dependence. The contrast values
are ≈ 1.24, 1.24, 1.34, for the three methods. The deviation of measured values
is roughly the same for all the three methods, specifically ±0.02. By contrast,
the results obtained with B-R and Mag show a monotonic increase in the average
contrast of features from the disk center to µ = 0.2. This increase is about 1%
and 5%, for the two methods. The standard deviation of measured values also
slightly increases toward the limb. The mean contrast at the disk center is
≈ 1.31 ± 0.02 and 1.35 ± 0.04 in the two methods respectively.
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Figure 3.3: Center to limb variation CLV of facular contrast in CaIIK and two
PSPT continuum bands computed for the year 2000, using the five methods
described in the text. Error bars represent the standard deviation over the
position bin; for clarity, they have been superimposed only over the results
obtained with the Ktr method. Details about the deviation of contrast results
obtained with the other methods are given in the text.
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Figure 3.3 shows also the average contrast CLV in the PSPT blue and red
bands. In both cases, the contrast CLV increases almost monotonically toward
the limb, with no maximum up to µ = 0.2. Actually, the CLV obtained with
Mag shows nearly a plateau for disk position corresponding to µ < 0.4, but this
is likely due to the applied compensation of the noise pattern (see Ermolli et al.
(2007) for more details).

Notice that the contrast CLV obtained depends largely on the identification
method used. In particular, the results differ for up to a factor 3% and 2% at
µ = 0.2 on PSPT blue and red bands, respectively.

The contrast of features selected with Ktr is slightly larger than that com-
puted by all the other methods, save the one of the magnetic signal. Actually,
Ktr selects larger size features that mainly occur on activity belts. Mag iden-
tifies much smaller size features than do the other methods, features that are
also not strictly distributed along activity belts, but mostly occur there. We
find that the average contrast of these features is slightly larger than the one
obtained by Ktr (> 1% at µ < 0.5). On the other hand, the contrast values
obtained for the features identified at the disk center by Mag is lower than the
values measured with the other selection criteria (≈ 0.5%). Average contrast
values lower than unity, i.e. features that show a negative contrast relative to
the quiet sun, are found strictly at the disk center of the red band observations.
Negative contrast measurements are found up to µ = 0.9, but the average value
is positive.

The vertical bars in Fig. 3.3 show the standard deviation of measured values
with Ktr method. Deviations obtained with B-R are very similar. The ones
obtained by CH and NR are smaller, up to half the value at disk positions
µ > 0.6. The deviations of values obtained by Mag are up to 1.5 - 2 larger than
the one obtained by the Ktr at each disk position.

The maximum contrast and its deviation vary in a similar fashion to the
average values, though its dependence on disk position is twice as large. The
average value of the maximum contrast obtained at each disk position does not
depend on the method. In fact, the absolute difference among the obtained
values is smaller than the deviation of the contrast measurements at each disk
position. On the contrary, the average of the minimum contrast value depends
slightly on the method applied for disk position µ < 0.8. Nevertheless, the abso-
lute difference among the obtained values lies in the largest deviation computed.
The average of the minimum value obtained is negative at each disk position
for both the continuum bands analyzed.

3.3.2 Black body approximation

The comparison of the contrast of magnetic features is an important tool for
the investigation of the temperature stratification. According to Allen (2000),
the contrast Cλ(µ) is related to the contrast measured at 5300Å by the formula:

Cλ(µ) = C5300(µ)0.5λ−1 (3.2)

The ratio of contrasts measured at two different wavelengths λ1 and λ2 is
thus

Cλ1
(µ)

Cλ2
(µ)

=
λ2

λ1
(3.3)
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Figure 3.4: Ratio between the mean contrasts measured in the Blue and Red
bands as a function of disk position. If faculae and quite sun were emitting
like Black Bodies, points would lie on the straight horizontal line shown, whose
value is λR/λB = 1.48. Results obtained with Ktr method are shown.

that is a constant and is not expected to change with position on the solar
disk. Figure 3.4 shows instead that the ratio of the contrast in the two PSPT
continua is constant toward the limb, at µ < 0.8, while at the center it de-
creases rapidly with the decrease of µ. This is most likely due to the fact that
relation 3.2 is derived under the assumption that both the magnetic structure
and the ’quiet sun’ emit radiation as black bodies of a certain temperature.
In next chapters it will be shown that atmospheres in both magnetic and non
magnetic regions are stratified and that observations at different heliocentric
angles sample different layers of the atmosphere. The discrepancy of results
shown in fig.3.4 from relation 3.2 is thus not surprising. The approximation is
instead expected to hold when comparing measurements obtained at the same
disk position for different wavelengths, although deviations are expected due to
the dependence of H− opacity on wavelength (Lawrence, 1988). In particular,
wavelengths were the opacity is higher sample upper regions of the photosphere,
while wavelengths were the opacity is lower sample deeper regions. Due to the
temperature stratification in the magnetic features and in the quiet sun (see
chapters 4, 7 and 8 for more details), the black body approximation is therefore
expected to hold for structures located at the same (or close) heliocentric angle
and observed at wavelengths that sample close layers of the solar atmosphere.

In chapter 8 I will describe in more details the derivation of formula 3.2
and explain, by numerical simulations, why the deviation of the curve from a
straight line is larger at disk center and smaller at the limb.

3.3.3 Size and Activity Cycle dependence

As will be explained in detail in chapter 4, according to flux tube models the
observed contrast depends on the structure size. Tubes whose size (diameter)
is lower than the optical depth (about 100 km in the solar photosphere) of the
atmosphere are expected to be brighter, because of the radiative channelling
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from the flanks. Tubes whose size is larger are expected to have a negative
contrast, because the radiative heating is not enough to counterbalance the
temperature decrease due to the convection inhibition by the magnetic field.
The structures we investigated are clusters of flux tubes. Nevertheless, as will
be shown below, their photometric and geometric properties reflect properties
of single magnetic elements.

In order to study this topic, we have investigated the scaling of the maximum
and average contrasts of the regions with their area. Figure 3.5 shows results
obtained in the three bands for the average and maximum values for structures
identified with the Ktr method. In order to reduce projection effects, analyses
was restricted to structures whose baricenter was at disk center (µ ≥ 0.9).
Contrasts were averaged in bins of areas of width ∆ logA=0.05.

The average contrast of chromospheric faculae (CaII K band) increases with
feature size for area values of about 2000 square pixels, corresponding to about
4000 Mm2. At larger values, the contrast oscillates around the value 0.3. At
photospheric level, that is in the blue and red continua, the contrast decreases
from the smallest to the largest areas and oscillates around the values 0.007
and 0.002 respectively at areas larger than 2000 square pixels. On the contrary,
the maximum contrast increases at areas smaller than 2000 square pixels and is
constant at larger areas in all the three wavelengths. It is important to notice
that these variations are smaller than the error bars (not shown in fig.3.5).
Nevertheless the large scale trends reflect some physical properties of identified
features.

The rise of both the mean and maximum contrast at the smallest areas is an
effect of filling factor and resolution. The detector has in fact a finite pixel size,
much larger than the mean size of a single magnetic element (2000 km against
about 200 km estimated for the diameter of flux tubes). Each pixel can then
contain several elements. If each element has associated the same brightness,
the pixels that contain more elements (higher filling factors) will have higher
contrast than pixels that contain less elements. This is in agreement with the
fact that the scatter plots (not shown) showed a large scatter at small areas,
with some small regions being characterized by large contrast. Nevertheless, at
these smallest sizes the effect of seeing, that spreads energy over an apparent
area that is larger than the physical one, is also expected to be larger, thus
reducing both mean and maximum contrasts. The decrease of mean contrast
in Blue and Red images has to be ascribed to the negative contrast associated
to flux tubes whose size is larger than the mean free path of photons. This
view is corroborated by the fact that the scatter plots (not shown) also showed
that a small number of structures have a mean negative contrast at disk center.
The fact that the largest structures also have associated the highest maximum
contrast is an observational evidence of the fact that active regions are populated
by flux tubes of different sizes, as suggested by Walton and Preminger (2003a)
and as observed by Spruit and Zwaan (1981) by the analyses of high resolution
data.

Temporal variations of measured contrast were also investigated. Figure
3.6 shows the average and the maximum contrasts of features identified at disk
center (µ ≥ 0.9) and separated by their size for each year of the period analyzed.
The reference area value considered is 2000 pixel2. The choice of this area value
lies in the contrast dependence on size shown above. The identification method
is the Ktr. Figure 3.6 shows that, independently from size and wavelength,



www.manaraa.com

Radiative properties of complex magnetic elements 43

Figure 3.5: Dependence of mean (left column) and maximum (right column)
contrast on area of features identified with Ktr method in the three OAR-PSPT
wavelengths.
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Figure 3.6: Temporal variation of the average contrast of features identified at
disk center (µ ≥ 0.9) and selected depending on their size: features with area
larger (solid line) and smaller (dashed line) than 2000 pixel2 (≈ 2800 Mm2).
Crosses, stars, and squares show the CaII K, blue, and red measurement results,
respectively. For clarity, the deviation in measurements is plotted only for the
sample with the highest contrast values.

photometric properties of identified structures do not significantly vary with
solar activity cycle, the small variations observed being within the error bars.

3.3.4 Observational limitations

As already explained, results showed in previous paragraphs were obtained with
images selected from the OAR PSPT archive. These images were in turn ob-
tained by summing 25 single short exposure frames taken usually within 1
minute, thus increasing the Single to Noise ratio, but reducing the resolution.
I will refer to these images as photometric. In order to investigate the effects
of resolution in the determination of the CLV of facular contrast, we have com-
pared the results obtained with this dataset with results obtained with other two
datasets. In particular we analyzed a sample of best quality images from MLSO
archive from summer 2005 and the corresponding single frame best image for
that day from OAR archive. As already explained, because of the more stable
atmospheric conditions of the site, MLSO images are usually characterized by a
better resolution and a lower level of scattered light. Single frame images from
OAR archive are also characterized by a better resolution than the photometric
ones. A statistical analyses (Fazzari et al., 2003) showed that the average reso-
lution of these frames is 3 arcsec, with a large sub sample diffraction limited (2
arcec), compared to about 4 arcsec of photometric images.

Figure 3.7 shows relative differences among the results obtained on OAR
photometric images and the other two datasets. On average contrast is higher
when measured on higher resolution images, but the differences are very small
(within 1%). It is also worth noticing that larger variations are observed at the
limb, where other effects like fore shortening are important.
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Figure 3.7: CLV of facular contrast relative differences among results shown in
previous paragraphs and results obtained with different datasets. Solid and dot-
ted lines: Blue continua from OAR single frame and MLSO respectively. Dashed
and dot-dashed: Red continua from OAR single frame and MLSO respectively.
For clarity, only results obtained with Ktr method are shown.

3.4 Discussion of results and comparison with

previous analyses

The literature concerning the study of photometric properties of magnetic re-
gions in the solar atmosphere is very wide and results obtained for facular regions
are controversial. Discrepancy among different authors have been ascribed to
differences in the data resolution, wavelength, disk position, magnetic filling
factor, features size (Solanki, 1993). We also showed that the structures iden-
tification method is crucial in the measurements of the CLV of facular contrast
and its physical interpretation. A comparison with previous published data with
the ones we obtained is therefore very difficult.

In fig 3.8 results obtained by some other recent studies and by our analyses
are shown. The data are similar because of resolution and wavelength to the
ones we analyzed. In general, our results qualitatively agree with results ob-
tained by authors that employed features identification methods similar to the
one described in paragraph 3.2.2, that is methods based on Intensity threshold-
ing. Foukal et al. (2004) and Walton and Preminger (2003b), for instance, also
measured in the photosphere a monotonic increase of the contrast toward the
limb. Data obtained using the magnetic field intensity to detect structures, like
in Ortiz et al. (2006) show instead a maximum toward the limb. Note, however,
that results obtained by these latter authors concern the CLV of contrast of pix-
els whose corresponding flux in contemporary acquired magnetograms exceeds
a certain threshold, and different CLVs are obtained for different associated
magnetic field intensity. For instance in fig.3.8 CLVs for pixels that have as-
sociated a magnetic field of 110 and 450 G are shown. These curves show a
negative contrast at disk center and a rapid increase toward the limb for pixels
that have associated a more intense magnetic field, and an increasing contrast
from a null value at disk center to a maxim value for pixels that have associ-
ated a lower magnetic field. The maximum position resulted a function of the
associated magnetic field while the point at which the contrast changes sign is
always about µ = 0.8. These data are similar, for what concerns the wave-
length, to the Red continuum PSPT images, but the agreement of results is not
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Figure 3.8: Selected facular contrast CLV measurements plotted versus disk
position. The symbols with error bars show the results obtained with the Ktr
method, while those without error bars show the results by the Mag method.
The different lines show the results of recent measurements of facular contrast
presented in the literature.

very good. Particularly, our scatter plots show that very few structures have
a negative contrast at disk center, so that the mean value is null or positive.
Differences have to be ascribed to the different filters and to the fact that we
investigated the mean or the maximum contrast of clusters of pixels, instead
of the contrast of single ones. Finally, Berger and Title (2001) showed, by the
comparison of high resolution G-band (430.5± 1 nm) data and magnetograms,
that bright points have associated a high magnetic flux, while to a high mag-
netic flux concentration not always corresponds a positive contrast region. This
result, confirmed recently by Tritschler and Uitenbroek (2006) by MHD simula-
tions, would explain the lower contrast measured in general when solar features
are identified on magnetograms.

Other authors have investigated the ratio of contrast of faculae at different
wavelengths and at different positions on the solar disk. Chapman and McGuire
(1977), by the analyses of solar faculae observed at the very limb in five different
wavelengths (namely, in nanometres, 535 ± 78, 525 ± 70, 662 ± 5, 788 ± 5,
1010 ± 125), obtained

∆I(λ)

I(λ)
∝ ∆I(5300Å)

I(5300Å)
· λ−1 (3.4)

independently from disk position in the field of view analyzed. Here ∆I(λ)/I(λ)
is the ratio measured at each wavelength λ. A small discrepancy from this curve
was found for data in the blue filter (435±78 nm). In particular the value of the
facular contrast in this filter resulted higher than the value expected by relation
3.4. The authors speculate this result to be caused by an increase of opacity in
the blue, consequent to line haze effect (”line haze” are the multitude of weak
lines that populate the continuum, thus depressing it), and to an increase in
the temperature of faculae in the upper layers of the atmosphere, where the
blue light comes from. In general, relation 3.4, that is a decrease of contrast
with wavelength, is verified by measurements of facular contrast at the limb
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(e.g. de Boer et al., 1997; Wang and Zirin, 1987). Lawrence (1988), by the
analyses of facular contrast in three different continua all over the disk, found
a good agreement of data with relation 3.3 for faculae at the limb, that is he
found that the ratio of contrasts is constant respect to disk position. For faculae
at disk center, instead, the ratios of the contrasts at different wavelengths as
a function of disk position did not lie on a single straight line, as should be
if relation 3.3 was valid all over the disk, but, in agreement with our finding,
increased toward the center. Discrepancy from a straight line of ratio of facular
contrast was also found by Ahern and Chapman (2000a), who analyzed facular
contrast at different disk positions. Our results are thus in agreement with
the ones previously shown in the literature. In this thesis I also show that the
deviations from relation 3.3 observed, are not due to noise or bad sampling, as
suggested by Lawrence (1988), but are an effect of temperature stratification of
the atmosphere inside and outside the magnetic structures.

The size dependence of the contrast is also in qualitative agreement with re-
sults obtained by previous investigations. In particular Walton and Preminger
(2003a) analyzed full disk images in red continuum and CaIIK and investigated
the maximum contrast of facular regions in function of their area and position
on the disk. Features were identified, in both filters, using a thresholding tech-
nique. They found, in agreement with our results, that the maximum contrast
is positive and increases with the size of the features in both filters. They also
compared these results with the ones obtained identifying structures in red con-
tinua with masks in CAIIK images, that is with a method similar to the one we
adopted for our analyses. They found that at disk center the ’extreme contrast’,
that is the contrast whose absolute value is the largest within a structure, has
the opposite behaviour, the largest features showing the lower negative contrast
and the smallest ones having the higher positive contrast. The mean contrast,
instead, was positive at all area ranges. In particular it was smaller at smallest
areas, while the same value was found for larger areas. This is not in agreement
with our results, since our fig. 3.5 shows that the largest areas have associated
a lower mean contrast. This difference might be a consequence of the different
area binning.

Ultimately, our finding that photometric properties of faculae do not vary
with the solar cycle is in agreement with Ortiz et al. (2006).

3.5 Geometric and Photometric properties of fac-

ulae

Figure 3.9 shows the fractal dimension of features identified on Calcium images
from different datasets (see chapter 2) and the maximum contrast of faculae
measured on Calcium images from year 2000 (these plots have been already
shown in fig.2.5 and fig.3.5) as function of the features size. The similarity of
the two curves is striking, since they show that both fractal dimension and con-
trast increase with size and become constant at similar area range, that is at
areas larger than about 1000-2000 pixels square. Speculation about a common
physical process that might explain the shape of the two curves is thus tempt-
ing. Nevertheless, in chapter 2 I showed that fractal dimension estimates are
critically affected by pixelization and resolution effects and that the increase of
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Figure 3.9: Left: Fractal dimension d1 versus area of bright features identified
on calcium images from different datasets (symbols are the same as in fig.2.5).
Right: Mean contrast versus area of bright features identified on PSPT calcium
images from summer 2000. Both fractal dimension and contrast rise with fea-
tures size and reach a plateau at areas larger than 1000 and 2000 pixels squares
respectively.

the estimated dimension at smallest areas is most likely an artefact. In previous
paragraphs of this chapter I also commented on the fact that the increase of
facular contrast at the smallest areas might be a result of the combined effect of
filling factor and resolution. Moreover, it is reasonable to assume that regions
with higher filling factors, and thus more brilliant, are more compact and thus
should have smaller fractal dimension. Measurements by Lawrence (1991) of
the fractal dimension of an active region with high resolution data, showed in-
deed that the periphery of the region is made up of structures of higher fractal
dimension, while the bulk resulted more compact and had associated a lower
fractal dimension. Plot in fig. 3.9 shows instead the exact opposite, with the
highest fractal dimension measured in regions where the the contrast is higher
and that are thus expected to be more compact. As already mentioned, this is
most likely an effect of pixelization. Nevertheless, the effect could also be en-
hanced by the fact that structures are selected on images according to brightness
criteria. It could thus be that only the most compact part of smallest regions is
detected, thus biasing the result. For larger regions, instead, the field is ’more
concentrated’ even at the periphery of the regions, so that fractal dimension is
higher. Unfortunately, it is difficult to verify these last statements with the data
employed in the analyses presented in the previous and in this chapter. High
resolution observations, as well as the employment of different fractal dimension
estimators would allow to investigate the distribution of the magnetic field in
active regions.
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Chapter 4

The flux tube model

In this chapter I describe the concept of the Magnetic Flux Tube. In the first
paragraph I describe the essential scheme of the model, as it was introduced by
Spruit (1976) and how it can qualitatively reproduce some observed properties
of magnetic structures characteristic of the solar photosphere. A description of
the equations that physically describe the problem, that is the Magneto Hydro
Dynamic equations, and their static version, the Magneto Hydro Static Equa-
tions, is also given. Since their solution is not simple, several simplifications and
assumptions have been suggested in the literature. Here I present the two most
used: the Thin Flux Tube approximation and the Force-Free tube approxima-
tion. A brief review of the 2D and 3D codes nowadays available to investigate
magnetic features properties is finally given. When describing the basic con-
cepts of the Flux Tube, I have followed the original works by Spruit (1976) and
Spruit and Zwaan (1981). In the composition of the rest of the chapter, the
reviews by Solanki (1993) and Steiner (2005b) have been very useful.

4.1 The concept of Flux Tube

The intimate connection between solar activity and presence of magnetic fields
is clear since 1908, when Hale (Hale, 1908) conducted the first measurements of
magnetic field in sunspots. Since then, observations carried out with more and
more sophisticated instruments and techniques, have shown that most of the
observed features and events that occur on the sun have a magnetic origin (see
also chapter 1). Despite such experimental evidence, the physical processes that
govern this connection are not clear and deserve more investigation. Observa-
tions in UV and X-ray spectral ranges, have shown that magnetic field in the
upper regions of solar atmosphere (corona and chromosphere) manifests in very
narrow field aligned features of enhanced emission. In the lowest regions of the
atmosphere, the photosphere, high magnetic field concentrations appear as re-
gions of either higher and lower contrast respect to the so called quiet sun, that
is regions with null (or better to say ’very low’) magnetic field. In particular,
high resolution observations (sub arcsec) have shown that photospheric brilliant
regions are most probably the result of the aggregation of small elements (some
hundred kilometres), that have associated a high magnetic field (1-2 kilogauss).
These experimental evidences give credit to the concept of flux tube, the theo-
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retical model introduced by Spruit (1976) in order to investigate the properties
solar magnetic field and the associated features observed at different layers of
the solar atmosphere. The simplest magnetic Flux Tube consists of a region of
the space of highly concentrated magnetic fields lines, surrounded by regions in
which magnetic field is absent.

The concept of Flux Tube is of course an idealization of magnetic field line
organization. The physics that govern these processes are determined by the
ratio β of gas to magnetic pressure:

β = 8π
P

B2
(4.1)

where P is the pressure of external plasma and B is the magnetic field
intensity. In the convective zone the gas pressure dominates and consequently
β ≫ 1. Near the photosphere β ∼ 1 both in sunspots and small-scale field
features. It can be shown that this is not accidental, since fields with β ≥ 1 are
subject to instabilities that restore the value of β to unity (Spruit and Zwaan,
1981). In the higher layers of the atmosphere gas pressure decays exponentially
with height while magnetic field pressure decays as a power law. Consequently
β ≪ 1. Typical values in the lower corona are, for instance, between 10−4 to
10−1 in areas corresponding to active regions. Under these conditions the flux
tube expands to fill the space, so the field lines diverge with height and fill the
chromosphere, forming the so called ’magnetic canopy’. A sketch of the magnetic
field configuration is given in fig.4.1. In this physical environment gas pressure
is subject to large variations from a magnetic field line to an other, since small
variations in magnetic field intensity can cause large variations in gas pressure.
The flux tube model is used to understand properties of structures that are
formed in the three regimes. Because β spans in a large range of values, these
structures are governed by different physical processes and are characterized by
different properties (like characteristic time scale, energy emission and spatial
scale). In the following I will focus only on the β ∼ 1 regime, that is only
on structures typical of the photosphere (photospheric faculae, network and
sunspots).

At photospheric level, magnetic structure are formed and stabilized by the
interaction of the magnetic field with the convective plasma, as shown by nu-
merical simulations (Weiss et al., 1996; Keller et al., 2004; Stein and Nordlund,
2006). Basically, the flux is expelled by the convective motions and pushed to-
ward the boundaries of the overturning cells, where it is accumulated. The tube
is held together by the balance between the outward pressure of the field and the
inward force caused by a lower gas pressure inside the tube. In next paragraphs
I will show that for slender tubes, that is for structures whose section is some
hundred kilometres, and if no forces except gravity act on the gas inside the
tube, at each height the horizontal pressure equilibrium requires that:

Pe(z) − Pi(z) = B2/8π (4.2)

where Pe is the pressure of the external un-magnetized plasma, Pi is the gas
pressure inside the tube and B is the magnetic field intensity. According to
convective collapse model (see paragraph 4.2.2) the gas density inside the tube
is reduced and buoyancy makes the tube vertical. A simple sketch of a flux tube
is depicted in fig.4.2.



www.manaraa.com

Radiative properties of complex magnetic elements 51

Figure 4.1: Structure of a magnetohydrostatic network model. Field lines are
confined in small regions in the photosphere, where β ∼ 1, forming the ’network’.
Because gas pressure is highly stratified, at the highest levels of solar atmosphere
β ≪ 1 and field lines expand forming the ’canopy’. From Foukal (1990).

Figure 4.2: Sketch of a magnetic flux tube in the photosphere. Arrows indicate
convective motion. In this sketch tube is not exactly vertical, but is inclined
because of the interaction with surrounding convective plasma.
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The interior and the field free medium are separated by a current sheet.
If the tube is un-twisted (the internal field is potential), then its Radius as
a function of depth and the field configuration inside are both determined by
the magnetic flux and the pressure difference Pe − Pi. It can be shown it is
impossible to find analytical solutions to this problem and therefore numerical
solutions or other assumptions have to be made. Some of these models will be
discussed in paragraph 4.2. I will mostly focus on static models, nevertheless it
is important to notice that flux tubes are embedded in convective plasma, and
are thus subject to motions and interaction with other magnetic structures. In
fig.4.2, for instance, convective motion bends the tube that is inclined respect
to the vertical direction.

4.1.1 Temperature stratification and photometrical prop-

erties

Because of the high magnetic field, convection is suppressed in flux tubes and
radiation is the main energy transport mechanism. Consequently in the deeper
layers of the photosphere, where convection is still efficient, the internal tem-
perature is lower than external one. Since also the gas density inside the tube
is lower than the external one the tube is less opaque than the un-magnetized
plasma. The radiation is thus less attenuated inside the tube, that is heated
by radiation channelling through the flanks from the hotter environment. This
effect is efficient for tubes whose diameter is smaller or comparable with pho-
ton mean free path in the photosphere. For larger tubes the radiation that
propagates through the flanks can not heat the whole structure which remains
colder. The transitions between the two regimes is about 500 km (Knolker and
Schussler, 1988; Spruit, 1976) (slightly less than 1 arcsec). Structures whose
size is larger than this threshold are representative of micropores, pores and
spots, whereas smaller structures reproduce photometrical properties of facu-
lar elements and network. In the following I will focus on these latter ones.
The temperature profile inside the tube is therefore determined by the intensity
of the magnetic field, that determines both pressure and convection efficiency
reduction, with a consequent reduction of temperature, and the radiation chan-
nelling from the flanks of the tube, that causes an increase of temperature. This
last process is dependent on opacity and is thus expected to be more important
from few kilometres below the surface and above. In the deeper layers the large
increase of opacity makes the channelling less efficient and the temperature in-
side the tube results lower than the external atmosphere. At higher levels the
temperature increases to become eventually higher than the external one. In
figure 4.3 the temperature stratification inside and outside a tube is shown. The
two atmospheres have the same temperature at height zero, that corresponds,
in this model by Fabiani-Bendicho et al. (1992), to the base of the photosphere.
Below and above temperatures in the tube are lower and higher respectively.

The radiation intensity emitted depends on the temperature of the gas. It is
very common, for instance, to assume black body radiation, so that the intensity
is proportional to the 4th power of the temperature. The difference in the
temperature stratification between the two atmospheres thus determines the
photometrical properties of the structure. Depending on the height at which
the τ = 1 surface is located, that is the layers from which the radiation observed
is coming, the same structure can have negative, null or positive contrast respect



www.manaraa.com

Radiative properties of complex magnetic elements 53

Figure 4.3: Sketch of temperature stratification inside (FT) and outside (COOL)
a magnetic flux tube. Since the structure is symmetric only half of the tube is
shown. Due to channelling at the same depth the temperature in the tube is
lower, equal or higher than the temperature of external un-magnetized atmo-
sphere. The τ = 1 surface (thicker line) is located deeper in the tube. From
Fabiani-Bendicho et al. (1992)

to the surrounding atmosphere. Note that the value of τ is determined by the
opacity and since the atmospheres inside and outside the tube are different
even the τ = 1 surface is located at different heights. In particular, since the
gas pressure is lower, in the tube the constant τ surface is located deeper than
outside. A schematic example of the resulting shape of the surface is illustrated
in fig. 4.4 (left) (this is also the original flux tube model by Spruit (1976)). The
portion of the curve inside the tube is also referred to as ’floor’ and the flanks
as ’walls’. The difference of the heights at which the optical depths outside and
inside the tube are equal to one is called Wilson depression. The opacity is a
function of the wavelength so that the shape of the constant τ surface changes
and the same magnetic structures have different contrast when observed with
different wavelength filters. The position of the flux tube on the solar disk is
an other important parameter in the determination of the magnetic features
emissivity. When observed off disk center, in fact, more and more radiation
coming from one of the flanks is visible. Because it can radiate almost freely
into the vacuum, the temperature of the wall is expected to be relatively cooler
respect to the layers located at the same geometric depth but further from the
tube. Nevertheless, its intensity center to limb variation is opposite to the center
to limb variation of the quiet sun and the contrast is thus enhanced toward the
limb, where more ’wall’ is visible respect to the ’floor’.

Figure 4.4 (right) shows the center to limb variation of the contrast simulated
by Spruit (Spruit, 1976) for different physical and geometric conditions. The
contrast value increases from the center to the limb, reaches a maximum at
some disk position and decreases again at the limb. Spruit showed in particular
that the CLV depends on:

• The CLV of the intensity of the surrounding quiet sun.
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Figure 4.4: Left: Sketch of the Spruit model described in the text. Right:
simulated center to limb variation of the contrast observed with a resolution of
0.3” for different models.

• Obscuration of part of the floor at wall from the center side wall

• The CLV of the radiation of the floor.

The observed CLV of the contrast is thus given by a combination of the CLV
contrast of the floor:

Cf (µ) =
If
λ

Iq
λ

− 1 (4.3)

and the CLV of the contrast of the wall:

Cw(µ, z) = (
Bλ(Tw(z))

Iq
λ

− 1)e−τ(µ,z). (4.4)

where superscripts and subscripts q, f and w indicate the quiet sun, the floor and
the wall respectively. Tw(z) is the temperature of the wall and Bλ is the Plank
function. The last equation 4.4 is valid under the assumption that the wall is
emitting as a black body. According to this model, the maximum contribution
from the wall to the contrast occurs at a position µ0, where µ0 satisfies:

D

zw
=
√

1 − µ2
0/µ0 (4.5)

D is the tube diameter and zw is the Wilson depression.
As confirmed by 2D and 3D MHD simulations (see 4.2.3), in spite of its

simplicity this model picks the most important factors (the ones listed above)
that determine the CLV of the observed contrast of bright elements in the solar
photosphere.

Finally it is important to notice that this model can reproduce observations
of continuum radiation. In the cores of lines the opacity inside the tube is higher
and the contribution of the wall is less important. The model is then totally
inadequate to explain contrast enhancements observed in the chromosphere (for
example CaIIK observations) or in the outer layers of the atmosphere, where
other mechanisms like wave propagations and magnetic field reconnection take
place.
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4.2 The Magneto Hydro Dynamic Equations

Realistic simulations of magnetic features have to solve the Magneto Hydro
Dynamic Equations (MHD):

Energy
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Momentum
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Induction

∂Bj

∂t
+

∂Bjuk

∂xk
= Bk

∂uj

∂xk
+ η

∂2Bj

∂xk∂xk
(4.8)

Continuity

∂ρ

∂t
+

∂ρuk

∂xk
= 0 (4.9)

Here u is the velocity of the gas, ρ and p are its density and pressure re-
spectively, B is the magnetic field intensity, g is the gravitational acceleration
vector. {j, k, l} specify direction in space, t is the time and q is the total flux.
The internal energy e is given by e = CV ρT , where CV is the specific heat at
constant volume and T is the temperature of the gas. Symbols µ and η are the
dynamic viscosity and the magnetic diffusivity respectively. We also have:

p =
KB

me
ρT (4.10)

where KB is the Boltzmann’s constant and me is the mean molecular weight.
We also need an other relation to close the equations, that is the Gauss Law of
Magnetism:

∂Bk

∂xk
= 0. (4.11)

The quantities µ, η, CV and me are gas properties and are functions of the
physical conditions (temperature, pressure, density). Their determination in
general requires to compute the complete ionization and excitation equilibria of
all the atomic and molecular species that compose the gas.

The total flux q is given by the sum of the flux of all the mechanisms that
contribute in the transportation of energies. In the convective and photospheric
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layers, the major energy transportation mechanism are Convection and Radia-
tion. The radiative flux is defined by:

FR =

∫ ∫

Iν · ~ndΩdν (4.12)

where ν is the frequency of the radiation, Ω is the solid angle and ~n is the
unit vector that describes the propagation direction of the radiation. In the
literature it is very common to evaluate the Radiative Flux using the diffusion
approximation (see chapter 5):

FR = −KR
dT

dxk
(4.13)

where KR is the radiative diffusion coefficient. As I will show, this approxi-
mation is valid in the deeper layers of the sun atmosphere, where the optical
depth is larger than unity. In the outer layers this approximation is not valid
and a detailed calculation of the radiation field (that is Iν for each propagation
direction and each position in the space) is required. In next chapter I will
explain theoretical and numerical approaches to this problem. The convective
flux is, in turn, often evaluated by the Mixing Length Theory (Vitense, 1953).

4.2.1 Magneto Hydrostatic Static Equations

Classes of solutions to the problem are obtained in the case of a Static flux
tube, whose equations are obtained imposing ~u = 0 and ∂/∂t = 0 in previous
equations. This new set of equations are known in the literature as the Magneto
Hydrostatic (MHS) equations. These are generally solved in a non uniform
medium, in which the magnetic field is concentrated in a certain region, i.e. the
flux tube, surrounded by a field free medium. For computational purposes the
magnetic structures are usually modelled as axially symmetric tubes. Even in
this case, the exact solution of the problem can be tricky and other assumptions
are generally made in order to simplify the equations. In the following I will
discuss the Thin Flux Tube and the Force Free Approximations, since these are
the most common approximations used in the literature.

The Thin Flux Tube Approximation

This model assumes that the width of the tube (its diameter) is smaller than the
pressure scale height of the gas Hp = p

ρg . The dependent variables are expanded

in a power series of the radial coordinate r (evaluated from tube axis):

f(r, z) =

∞
∑

n=0

rn

n!

(

∂nf

∂rn

)∣

∣

∣

∣

r=0

(4.14)

where f is a general physical quantity (magnetic field intensity, pressure, den-
sity etc.). The case in which only the zero order term is kept corresponds to
’Thin Tube approximation’. Under this assumption all the physical variables
are assumed to be averages over the tube cross section and vary only along the
tube. The MHS equations then become:

B2(z)

8π
+ pm(z) = ps(z) (4.15)
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dpm,s

dz
= ρm,sg (4.16)

πR2(z)B(z) = φ = const. (4.17)

pm,s =
k

me
ρm,sTm,s (4.18)

∇ · (FC + FR) = 0 (4.19)

Indices m and s describe quantities within and external to the flux tube
respectively. R is the radius of the tube and note it is a function of depth
z. In this approximation magnetic curvature is neglected and the vertical and
horizontal components of the pressure balance decouple from each other. Note
also that both convective and radiative flux still have non zero derivatives respect
to r only at r = R. This approximation is also used very often in dynamical
models (Fan, 2004), nevertheless it is interesting to notice that condition 4.15
is satisfied instantaneously, since the time travel of acoustic waves is lower than
any other typical dynamic scale of the tube.

Force-Free and Potential Field

Equation 4.7, under static conditions, can be rewritten using a compact form
as

−∇p +
1

4π
(∇× B) × B + ρg = 0 (4.20)

If the magnetic field is sufficiently strong to dominate the other forces, than
the force-free condition :

(∇× B) × B = 0 (4.21)

holds. For the interior of a flux tube this condition is valid if β ≪ 1. Small scale
magnetic fields are expected to fulfil this requirement in most of the cases. In
absence of electric currents ∇× B = 0, the field is potential and there exists a
scalar field ϕ that satisfies:

∇ϕ = −B (4.22)

The field in a flux tube can be potential if the structure is untwisted and axially
symmetric. A potential field surrounded by a thin (from 2 to 10 km, (Steiner,
1994)) current sheet and in pressure equilibrium with the surrounding atmo-
sphere is a good approximation to the magnetic structure of the tube.

A simple Flux Tube model

Under the assumption of a thin flux tube the vertical force balance is expressed
by eq.4.16 and the horizontal force balance is given by eq.4.15. Let us assume
that at each depth the equality Tm(z) = Ts(z) is satisfied. Then, from the ideal
gas law, it follows that

d lnPs

dz
=

d lnPm

dz
(4.23)

where the molecular weight is assumed to be the same inside and outside the
tube. It follows that the rationPm/Ps is constant with depth and so is β. Since
the tube is thin, the magnetic field does not vary with r and the flux is given
by

φ = πBR2 = πR2

(

8πP

β

)0.5

(4.24)
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from which

R =

(

φ

π

)0.5(
8πP

β

)−1/4

(4.25)

This relation shows that if the magnetic flux is constant then, since the gas
pressure decreases with height, R increases that means that the tube expands.
Of course the more the tube expands the more the radial component of the mag-
netic field increases and the more the tube is ’not thin’. As already explained,
the approximation is valid as long as R ≤ Hp. More precisely, if Br is the radial
component of magnetic filed, it follows from previous discussion that:

∣

∣

∣

∣

Br

B

∣

∣

∣

∣

=

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

= R

∣

∣

∣

∣

d lnR

Bdz

∣

∣

∣

∣

=
R

4Hp
(4.26)

The condition of thin approximation is thus valid if R < 4Hp.
The models and assumption described above are static. More detailed cal-

culations and observations have shown that magnetic structures are highly dy-
namic (see for instance 4.2.3). The different kinds of waves that propagate along
them (Spruit and Zwaan, 1981), the interaction of the surrounding convectiv-
elly unstable plasma and with other magnetic features cannot be described by
previous models.

4.2.2 Formation and Destruction of Intense Magnetic Flux

Tubes

Formation

Two main mechanisms have been proposed to explain the formation of intense
magnetic flux structures: the flux expulsion and the convective collapse. Ac-
cording to the first mechanism, magnetic field is expelled by upflow convective
regions and is advected to downflow regions by granular and supergranular mo-
tions. The order of magnitude of the field strength is given by the equipartition
field strength, that is the magnetic field is concentrated until the Lorentz force
inhibits convection:

B2

8π
=

ρ

2
v2 (4.27)

where ρ and v are granular density and velocity respectively. Typical values of
these quantities give B ≈ 400G and is thus not enough alone to explain concen-
trations of the order of kG. Nevertheless, let us suppose that at this point an
adiabatic downflow occurs in the tube. Than the tube becomes cooler than the
surrounding superadiabatic atmosphere and the pressure of the gas decreases.
The tube consequently evacuates and contracts until B ≈ (8πpext)

1/2. This
model is known as the ”convective collapse” and was first proposed by Parker
(1978). Using this model, Spruit (1979) obtained that an equilibrium of these
structures states at 1280 < B < 1650G, in agreement with observations.

While the first process has been observed and analyzed through 2-D and
3-D numerical simulations (e.g. Nordlund (1983); Hurlburt and Toomre (1988);
Vogler et al. (2005)), some aspects of the convective flux process are still un-
clear. Numerical 3D simulations have in fact shown that if the lower boundary
is kept open, the material inside the tube keeps going down and no equilib-
rium is reached (Solanki, 1993). An oscillatory steady state is reached when
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the lower boundary is close (Hasan, 1984, 1985). More recently Cameron and
Galloway (2005) have argued that convective collapse on the sun is likely to be
effective only for structures of scale of about 10 km. Stein and Nordlund (2006)
showed that flux tubes are evacuated at superficial layers (at τ = 1 surface),
but that their internal density exceeds the external one at greater depth. They
also included flux tube emergence from the deeper layers of the Sun. Finally,
Cattaneo (1999); Emonet and Cattaneo (2001); Cattaneo et al. (2003) have sug-
gested that a great part of the magnetic field in the photosphere is generated
by Local Dynamo processes associated with granular motions.

Destruction

There are two classes of phenomena that determine the destruction of magnetic
structures: processes that remove the magnetic flux and processes that do not.
The former types are related to cancellation mechanisms of magnetic flux struc-
tures of different polarities. If the cancellation occurs at photospheric level,
than the associated energy release may be visible. More recently it has been
suggested that magnetic field loops can be pushed down by downflow convec-
tive motion thus causing a net magnetic flux reduction (e.g. Stein and Nordlund
(2006)). In unipolar regions, fragmentation and coalescence of structures can
occur because of the interaction with convective plasma. It has been suggested
that small scale magnetic structures can be stable only if surrounded by strong
whirl flows (Steiner, 1990; Bunte, 1992). If the whirl ceases, for instance because
of the granular motions, than the tube becomes unstable and dissolves in few
minutes. This process takes the name of flute instability. If their diameter is
below 10km (Solanki, 1993), the fragments so produced are heated by radiative
channelling The pressure scale height thus increases and the magnetic field pres-
sure is reduced to the equipartition value given by 4.27. Flux tubes can also be
destroyed by strong upflows. These last processes do not involve a net change
in magnetic flux through the surface.

4.2.3 Brief review of Numerical Codes of Magnetic Flux

Tubes

The models described above were obtained with great simplifications and as-
sumptions about the atmosphere and the magnetic field. More realistic results
are obtained by solving the MHS or the MHD equations. Note that however,
most of the times, even these simulations are based on some assumption or ap-
proximation, like the thin flux tube. In the past numerous authors have solved
these equations in order to investigate the physical properties of solar magnetic
structures and to interpret the numerous, and often discrepant, observations.
Basically two classes of codes have been developed: 2D and 3D.

2D Numerical Codes

There are basically two approaches to the direct solution of the MHS equations:
the direct iterative solution and a relaxation approach.

In the first approach MHD equations are solved starting from a prescribed
field and plasma configuration, until a stationary or static solution is achieved.
The models developed by Deinzer et al. (1984a,b); Knolker and Schussler (1988)
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Figure 4.5: Example of static (left) and dynamic (right) 2-D flux tube model,
from Steiner (2005a). Left: a) Magnetic flux concentration and τ = 1 surfaces
for vertical line of sight (thick line) and as seen with an angle of 60 deg (thin
line). b)Continuum contrast corresponding to lines of sight (LOS) of panel a):
continuous line corresponds to LOS=0 deg and dashed line to LOS=60 deg. At
disk center (vertical line of sight), the contrast shows two bumps in correspon-
dence of the (inclined) tube flanks, that are hotter than the central part of the
tube. The contrast is higher when observed at LOS=60 deg, because more wall
is visible, as shown by a comparison of the two τ = 1 surfaces. Right: snap-
shot of a 2-d dynamical simulations. a)Magnetic flux concentration and τ = 1
surfaces for vertical line of sight (continuous line) and as seen with an angle of
60 deg (dashed line). b)corresponding contrast convoluted with a Gaussian in
order to mimic a resolution of 0.1”. Because of the interaction with the convec-
tive plasma, the tube is deformed, and so is the observed contrast at different
positions on the disk.

are of this type. The input parameters to these models are: the geometrical di-
mension of the computational box; the initial density reduction factor inside
the tube; the total magnetic flux across the boundaries; the temperature at
the bottom boundary; the temperature gradient at the top boundary. The
total magnetic flux and matter are assumed constant during the calculations.
The energy equation assumes usually gray radiative diffusion and the Mixing
Length formalism for radiative and convective processes respectively. Once the
stationary state is reached, the radiative properties of the structures are then
investigated by a radiative transfer code based on the short characteristic tech-
nique (see chapter 5). Models in which radiative diffusion is not assumed and
a more realistic radiative intensity field is computed numerically have also been
developed (Steiner et al., 1998).

The second approach assumes that the tube is already in Hydrostatic equi-
librium and solves the MHS equation using the formalism introduced by Low
(1975). Pizzo (1986) developed a numerical technique to solve these equations
even in the case in which a thin flux tube is not assumed. In these models
the following parameters are specified: the filling factor, that is the square of
the ratio of the tube radius to the width of the computational domain; the
magnetic field strength; the radius or the total magnetic flux of the tube. The
energy equation is replaced by specifying the atmosphere inside and outside
the tube. Usually 1-D atmospheric models are assumed and the photometrical
properties of structures are investigated by using a radiative transfer code. Ra-
diative transfer was included in these models for instance by Pizzo et al. (1993)
and by Steiner (1990). Steiner and Pizzo (1989) have realized a parametric
survey of these kind of models. They showed that the radiative heating from
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the tube flanks causes an increase of the gas pressure inside the tube, that fans
out in order to maintain the pressure balance until it merges with the field of
neighbour tubes thus forming the canopy. Thus hotter tubes are expected to
expand faster then cooler tubes. They also estimated the height at which the
canopy would form and found values consistent with the ones inferred from ob-
servations. The radiative heating also increase the opacity inside the tube. The
surface at which the optical depth is equal to one is consequently shifted up to
cooler regions thereby reducing the contrast.

3D Numerical Codes

3D numerical codes that solve the MHD equations have also been developed.
These codes allow usually a more detailed description of convective motions and
thus give an insight of the interaction of magnetic field with the surrounding
plasma.

Even in this case two kind of approaches exist in the literature. One ap-
proach consists in simplifying the equations and exploring the possible solutions
at the variation of some parameters. Simulations carried out by Cattaneo et al.
(1991); Hurlburt et al. (1996); Brummell et al. (1998); Porter and Woodward
(2000); Emonet and Cattaneo (2001); Bushby and Houghton (2005) belong to
this first group. A second approach solves instead to more realistic simulations
of physics in order to reproduce more realistically the observations. The works
by Nordlund (1985); Freytag et al. (1996); Asplund et al. (2000); Keller et al.
(2004); Vogler et al. (2005); Stein and Nordlund (2006) are an example of this
second approach. Being very time consuming, the MHD equations are solved in
boxes that correspond to small portions of the solar atmosphere. They thus usu-
ally simulate few square Megametres of the surfaces, extend from some hundreds
to some thousand kilometres depth in the atmosphere and have a resolution of
few tens of kilometres per pixel.

Such simulations allow to investigate the formation, the dynamic and the
destruction mechanism of magnetic flux concentrations. Vogler et al. (2005),
for instance, analyzed snapshots obtained initializing the system with uniform
vertical magnetic field of different magnetic flux density. They obtained, in
agreement with other works (e.g. Stein and Nordlund (2006)), that magnetic
field concentrates in the downflow regions forming elongated structures, rather
than round and symmetric tubes. Micropores, of sizes of about 1000km, are
formed in locations where several downflow regions merge. In other regions,
by contrast, the field is weak and randomly oriented, indicating that even the
so called Quiet Sun is not field free (see also Khomenko et al. (2005); Socas-
Navarro and Sanchez Almeida (2003)). They have also shown that highest
magnetic filed concentration regions have maximum brightness comparable (or
higher) with the ones of brightest granules, although most of the magnetic
structures have associated a lower contrast. They suggest the channelling of
radiation to be the main mechanism of emissivity enhancement, thus confirming
results obtained with 2D codes. The heating is very small though, since the
temperature enhancement induced by the radiative channelling is compensated
by the radiative losses in the vertical direction. These simulations have also
shown that in regions of high magnetic field concentration the sum of the average
gas and magnetic pressure is comparable with the gas pressure of weak-field
regions.
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Figure 4.6: Snapshots of a 3D simulations of Magnetoconvection as observed in
different wavelengths. From left to right: NIR (continuum band at 1626nm),
VIS (continuum band at 575nm), G band (at 430.5nm), wing of the CaIIK line
at 393.4nm. From Tritschler and Uitenbroek (2006). The contour lines in the
G band image underline very high contrast regions called bright points. The
simulations show that magnetic structures appear, at different wavelengths, as
filaments and ”flower” or ”ribbon” like, especially in the CaII K wing image.

Ultimately, 3D sophisticated codes allow to study in more details the inter-
action of magnetic filed with convection, and have revealed the highly dynamic
nature of the magnetic features and can reproduce most of the observations
(e.g. DePontieu et al. (2006); Keller et al. (2004)). Nevertheless, they have
shown that most of the observed properties are in agreement with the ones pre-
dicted by simplified models like the ones based on the hot wall and the thin tube
approximation. It is important to notice that these simulations are usually char-
acterized by very high resolution (at least one order of magnitude higher than
the one that can be achieved with modern instrumentation) and can reproduce
very limited portion of the solar atmosphere. They are thus more representative
of very small features, like the network or small faculae. At larger scales other
physical processes can take place and determine the formation, evolution and
dissipation of magnetic active regions.
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Chapter 5

The Radiative Transfer

Equation and the Short

Characteristic technique

In this chapter I introduce some basic concept about radiative transfer prob-
lem in stellar atmospheres. In particular I will describe the radiative transfer
equation, focusing on the plane parallel geometry and gray approximation. I
will illustrate some analytical and approximate solution to the equation, with
particular attention to models I have used for the numerical simulations shown
in next chapters. As the radiative transfer equation cannot be solved analyt-
ically in most of the cases, in the second part of the chapter I describe the
technique I employed to numerically solve it: the Short Characteristic. The
end of the chapter is dedicated to the description of two numerical techniques
employed to evaluated the mean intensity integral and the total radiative flux:
Carlson quadrature scheme and Gauss-Legendre quadrature scheme. Tests and
discussions of these numerical techniques are the topics of next chapter.

5.1 The Radiative Transfer Equation

We want to formalize the energy transport mechanism through a medium by
radiation. Let us consider the amount of energy dEν transported through the
area dA at location r, between times t and t + dt, at frequency band between ν
and ν + dν, over the solid angle dΩ:

dEν = Iν(~r,~l, t)(l · n)dAdtdΩdν = Iν(x, y, z, θ, φ, t) cos θdAdtdΩdν (5.1)

where n is the normal to dA, ~l is the direction of propagation of radiation,
and θ and φ are spherical polar coordinates. Iν is the monochromatic specific
intensity, and, for infinitesimal time interval, area, band width and solid angle,
it represents the energy carried by photons along a ray. In the following it will
be expressed by the units: erg · s−1 · cm−2 · Hz−1 · ster−1.
As will be shown in next paragraphs, photons and matter interact by emission
and absorption processes, so that energy is removed and added to a beam when
radiation passes thorough a medium. We therefore define the monochromatic

63
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emissivity jν the quantity that describe the intensity contribution from local
emission to a beam:

dIν(~r,~l, t) = jν(~r,~l, t)ds (5.2)

and the monochromatic extinction coefficient αν as the quantity that specifies
the energy fraction taken from a beam by absorption processes:

dIν(~r,~l, t) = − αν(~r,~l, t)Iν(~r,~l, t)ds (5.3)

where s is the geometrical path length along the beam and is expressed in cm.
Units for jν are erg · s−1 · cm−3 ·Hz−1 · ster−1, while units for αν are cm−1. αν

also represents the cross-section per unit volume. The length lν ≡ 1/αν is the
mean free path of photons of frequency ν in the material. The local amount of
intensity variation of a beam caused by absorption and emission events along
the geometrical path ds is therefore:

dIν(~r,~l, t) = jν(~r,~l, t)ds − αν(~r,~l, t)Iν(~r,~l, t)ds (5.4)

where
dIν(~r,~l, t) = Iν(~r + ∆~r,~l, t + ∆t) − Iν(~r,~l, t) (5.5)

and ∆t = ds/c. Moreover

Iν(~r + ∆~r,~l, t + ∆t) = Iν(~r,~l, t) + [(1/c)(∂I/∂t) + (∂I/∂s)]ds (5.6)

Substituting this latter relation into eq.5.3 we obtain the Radiative Transfer
Equation (RTE)

[(1/c)(∂/∂t) + (∂/∂s)]Iν(~r,~l, t) = jν(~r,~l, t) − αν(~r,~l, t)Iν(~r,~l, t) (5.7)

In the following I will assume static media and a one-dimensional plane parallel
atmosphere, so that eq.5.7 reduces to

µ · ∂Iν(z, µ)/∂z = jν(z, µ) − αν(z, µ)Iν(z, µ) (5.8)

where µ is the cosine of the angle between the direction of propagation of
radiation and the vertical coordinate z, that is µds = dz. Previous equation is
often written as:

µ · ∂Iν

αν∂z
= Sν − Iν (5.9)

where Sν = jν

αν
is the Source Function and has units erg·s−1·cm−2·Hz−1·ster−1.

When multiple processes contribute to local emission and extinction the total
source function is

STot
ν =

∑

jν
∑

αν
(5.10)

where each pair of jν and αν describes a different process.
Generally in stellar atmosphere studies eq.5.9, that requires the knowledge

of variables (αν ,Sν), is preferred to eq.5.8, that requires the knowledge of the
variables (αν ,jν). This latter two quantities can vary in fact some orders of
magnitude for a line transition, while variations cancel out in their quotient. In
eq.5.9 therefore the parameter αν describes atomic particles properties, while
the source function takes into account of the thermodynamic properties of the
medium, which is regarded as an ensemble of particles and photons.
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Eq.5.9 is more often written as

∂Iν

∂τν
= Sν − Iν (5.11)

where
dτν ≡ ανds (5.12)

τν is the monochromatic optical thickness and for a medium of thickness D is

τν(D) =

D
∫

0

αν(s)ds (5.13)

τν also describes the probability interaction of photons along their path. A
layer is optically thick for τν(D) > 1 and optically thin for τν(D) < 1. In stellar
atmosphere radiative transfer literature, instead of the optical thickness, that
is measured along the beam in the photon propagation direction, one usually
adopts the concept of optical depth. Since I am assuming plane parallel atmo-
sphere, and if the z-axis is taken positive toward the direction of the observer,
the angle-dependent optical depth is

dτν,µ ≡ − αν
dz

|µ| (5.14)

where µ > 0 indicates outward directions, that is rays that propagate from some
location in the stellar atmosphere to the observer, and µ < 0 inward directions,
that is rays that propagate from the observer to the interior of the atmosphere.
In many calculations is particularly handy to use the radial optical depth τν ,
defined as:

τν(z0) =

z0
∫

∞

−ανdz (5.15)

With this definition τν = 0 at z = ∞, where the observer’s eye is located.
Eq.5.11 can then be written as

µ
dIν(τν)

dτν
= Iν(τν) − Sν(τν) (5.16)

5.1.1 The exact solution

Let us consider a plane parallel slab bounded by the surfaces τ1 and τ2. The
analytical solution of eq.5.16 is

Iν(τν,2, µ) = Iν(τν,1, µ) · exp−(τν,2−τν,1)/µ +
1

µ

τν,2
∫

τν,1

Sν(tν) exp−(tν−τν,2)/µ dtν

(5.17)
For a semi-infinite slab, the solution for the outgoing radiation is:

Iout.
ν (τν , µ) =

1

µ

∞
∫

τν

Sν(tν) exp−(tν−τν)/µ dtν (0 ≤ µ ≤ 1) (5.18)
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where I have imposed that

lim
τν→∞

exp−τν/µ Iν(τν , µ) = 0 (5.19)

For the incoming radiation

Iinc.
ν (τν , µ) =

1

µ

τν
∫

0

Sν(tν) exp−(τν−tν)/µ dtν (−1 ≤ µ ≤ 0) (5.20)

5.1.2 Moments of Intensity

To formally describe the propagation of radiation through an atmosphere, the
following three moments of intensity respect to µ are often used:

Jν(z) ≡ 1

2

1
∫

−1

Iν(z, µ)dµ (5.21)

Hν(z) ≡ 1

2

1
∫

−1

Iν(z, µ)µdµ (5.22)

Kν(z) ≡ 1

2

1
∫

−1

Iν(z, µ)µ2dµ (5.23)

Each of them has the dimension of intensity. Jν is the intensity integrated over
the solid angle; Hν is related to the flux Fν by the relation Hν = Fν/4π; Kν is
related to the radiative pressure by pν = (4π/c)Kν . Jν and Hν are always pos-
itive, while Kν can be negative. The following relations among these moments
provide more radiative transfer equations. The first one is found integrating the
radiative transfer equation 5.16 in µ, and supposing isotropic source function,

1

2

1
∫

−1

µ
dIν

dτν
dµ =

1

2

1
∫

−1

Iνdµ − 1

2

1
∫

−1

Sνdµ (5.24)

dHν

dτν
= Jν(τν) − Sν(τν) (5.25)

or

−dHν(z))

dz
= kνρ(Jν(z) − Sν(z)) (5.26)

which means that the divergence of the radiative flux equals the difference be-
tween the angle averaged emitted energy and the angle averaged absorbed en-
ergy. The second one is found multiplying the radiative transfer equation eq.5.16
by µ and integrating:

1

2

1
∫

−1

µ2 dIν

dτν
dµ =

1

2

1
∫

−1

µIνdµ − 1

2

1
∫

−1

µSνdµ (5.27)

dKν

dτν
= Hν(τν) (5.28)
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differentiating again we obtain the second order version of the radiative transfer
equation

dK2
ν

dτ2
ν

= Jν(τν) − Sν(τν) (5.29)

Note that this last equation is equivalent to eq.5.26 and it also represents the
divergence of the radiative flux. Similar expressions are obtained for frequency
integrated quantities. These expressions are very powerful for solving radiative
transfer problems, since they eliminate the angle dependence, thus reducing the
dimensionality.

5.1.3 TE and LTE

Since the atmosphere of a star vary its composition and physical properties in
space and time, it is necessary to make some assumptions. The simplest as-
sumption is that of Thermodynamic Equilibrium (TE). It prevails when matter
and radiation are in equilibrium and therefore a single value of temperature T
determines particles temperature, atomic states population and the local ratio
between emission and absorption. In this state particles have Maxwellian ve-
locity distribution, atomic population levels are described by Saha-Boltzmann
equations and radiation field has a black body form given by the Kirchhoff-
Plank function. This state is an idealization and is never realized. However
stellar atmospheres often satisfy local thermodynamic equilibrium (LTE), which
occurs when the thermalization length is shorter then the length over which
the temperature of the gas changes markedly. When this condition is satisfied,
one can assume that the source function is expressed by the Kirchhoff-Plank
function:

Sν = Bν(T ) ≡ 2hν3

c2

1

e
hν
kT − 1

(5.30)

where h is the Plank constant and k is the Boltzman constant. LTE can be
valid for one particular process or line, while could be wrong for an other. A
general rule is that the continuum in the visible and infrared, the wings of most
spectral lines and the entire profile of weak lines, are formed in LTE, while the
line cores and strong lines are not. Departure from LTE in strong lines or cores
of weak lines is due to the non-thermal distribution of atomic levels, while the
electrons still maintain Maxwellian distribution. LTE is not a valid assumption
in solar corona and wind either. In these regions of the solar atmosphere, in
fact, density is low and matter-radiation interactions are too few to establish
thermodynamic equilibrium. In the following I will assume always LTE.

5.1.4 Radiation Matter interaction

Radiation interacts with matter through several processes of absorption, by
which energy removed from the beam is converted into medium thermal en-
ergy, and emission, by which energy is emitted into the beam at the expenses
of material energy. Whether or not a particular process occurs and its con-
tribution to the energy of the beam depends on photon frequency and matter
chemical composition and temperature. In addition to these processes, we also
have to consider scattering. When a photon interacts with a scattering center it
emerges in a different direction, but none (or very little) of its energy goes into
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the thermal energy of the gas. As a consequence the beam is attenuated, but
its energy is conserved. Radiation-Matter interaction processes determine the
opacity, and thus the optical depth τ , and the Source function in eq.5.16. In
the typical temperature range of stellar atmospheres (104K ≤ T ≤ 106K), the
following processes are dominant: bound-bound transitions; bound-free transi-
tions; free-free transitions; Thomson scattering. At lower temperatures other
physical processes may become important: negative ion absorption; molecular
absorption; Rayleigh scattering; Raman scattering; Photo-excitation to autoion-
izing states. With the exception of Thomson scattering, the cross sections of
the processes depend generally on photon energy, particle density, temperature
of the medium, populations of atomic levels. Bound-bound transitions occur
at fixed wavelength, and contribute mainly to line formation, while the other
processes contribute to the continuum spectrum. Other processes, like cyclotron
radiation, synchrotron radiation and plasma radiation, may affect the contin-
uum, but only at higher energies, that on the sun occur only during flares and
other eruptive events. Cross sections of all these processes are known by labo-
ratory experiments or theoretical calculations, once chemical composition and
physical properties of the medium are known.

5.1.5 Rosseland Mean opacity

The Rosseland mean opacity kR is expressed by the formula:

1

kR
≡

∞
∫

0

1
k ν

Fνdν

∞
∫

0

Fνdν

(5.31)

where kν is the total monochromatic absorption coefficient corrected for electron
scattering and induced emission. This the harmonic mean opacity weighted by
the Flux Fν . If we assume LTE and large optical depths, it can be shown (see
next paragraph, in optically thick section) that

1

kR
≡

∞
∫

0

1
k ν

∂Bν(T )
∂T dν

∞
∫

0

∂Bν(T )
∂T dν

(5.32)

This formula gives a useful estimate of the opacity as a function of the chemical
composition, the density and the temperature of a stellar atmosphere. In the
solar atmosphere, the dominant source of opacity are bound-free, free-free and
Thomson scattering. For these processes the opacity is usually approximated
by

kR = k0ρ
nT−s (5.33)

where k0 is a function of chemical composition, and n and s are parameters.
More in general the opacity depends also on the electron density ne, that reflects
the ionization state of matter and is therefore a function itself of ρ and T.
Under LTE, ne is given by the Saha Boltzman equations. The evaluation of
stellar opacity requires in general the theoretical knowledge of the cross section
of the physical processes that govern the interaction of radiation with matter,
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the chemical composition and physical state (ρ and T) of the atmosphere, the
population of each atomic level. Because of the big computational effort, in
stellar atmospheric models results obtained by big projects like the Los Alamos
Opacity Project and the Opal are used. Generally they provide opacity tables as
functions of density and temperature. Parameters in eq.5.33 are then estimated
by a fit to the tables in the physical ranges of interest. Three cases are of
physical relevance:

n = 1 s = 3.5 Kramer law
n = 0.75 s = 3.5 Schwarzchild’s opacity
n = 0 s = 0 electron scattering

The Kramer’s law is useful when opacity is dominated by free-free absorp-
tion, while Schwarzchild approximation yields better results when bound free
contributions are important. The case n=0, s=0 corresponds to pure electron
scattering.

Upper panel of fig.5.1 shows Rosseland mean opacity estimated by Cox and
Giuli (1968) in the case of Population I type chemical composition (Aller mix).
Opacity is plotted as a function of the temperature for several density values.
The steep initial increase at lower temperatures results mainly by bound free
processes, since at these temperatures hydrogen is partially ionized. At higher
temperatures, beyond the maximum, hydrogen is totally ionized, free free ab-
sorption dominates the opacity, that thus becomes ’Kramer like’. At lower
temperatures, indicated in the lower panel, certain types of atoms or molecules
can absorb one or more electrons, thus becoming negative ions. This increases
the probability of photoionization (bound free) processes. In astrophysics the
presence of H− ion is fundamental. In the case of the sun, and in general of
solar like stars, at photospheric level it is responsible of 60% of the continuous
opacity.

5.1.6 Approximate solutions to the RTE

The Radiative Transfer Equation has analytical solutions only at large depth,
where LTE is valid, i.e. in the optically thick case. In shallower layers analytical
solutions exist only under particular assumptions. In the next I will consider
the Eddington approximation for optically thin layers, and discuss the diffusion
approximation for deep layers.
Approximate solutions are in general found expanding the Source function in
power series of optical depth:

Sν =

∞
∑

n=0

(tν − τν)n

n!

∣

∣

∣

∣

dnSν(τν)

dtnν

∣

∣

∣

∣

τν

(5.34)

Substituting this expression into eq. 5.18 and eq. 5.20, one obtains outgoing
and incoming intensity radiation:

Iout.
ν (τν , µ) =

∞
∑

n=0

µn

∣

∣

∣

∣

dnSν(τν)

dtnν

∣

∣

∣

∣

τν

(5.35)

Iinc.
ν (τν , µ) =

∞
∑

n=0

µn

∣

∣

∣

∣

dnSν(τν)

dtnν

∣

∣

∣

∣

τν

[

1 − e−( τν
|µ|

)

n!

(

(

τν

|µ|

)n

+ n

(

τν

|µ|

)n−1

+ ...n!

)]

(5.36)
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High temperature opacity for an Aller mix (solar composition) star. Opac-
ity is a function of temperature and density. At lower temperature the opacity
steeply increases with temperature because of the increase of electron den-
sity due to partial hydrogen ionization. At highest temperatures the opac-
ity decreases because the hydrogen is almost fully ionized and the Kramer
model is a good approximation. Note that temperatures are given in KeV and
1KeV≃ 12000 kelvins. From Cox and Giuli (1968).

Low temperature opacity for a solar like star evaluated by different projects.
The value of gas density is such that log ρ/T 3

6 = −3, where T6 is the temper-
ature expressed in units of millions of kelvins. Opacity decreases at higher
temperature, for values typical of the photosphere. In this regime the H− is
the dominant source of opacity. At higher temperatures it steeply increases
because of the presence of molecules. From Ferguson et al. (2005).

Figure 5.1: Opacity values in the interior (upper panel) and in the atmosphere
(photosphere and chromosphere) of the Sun.
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From these the corresponding moments Jν , Hν and Kν are expressed as power
series of optical depth. These series converge for τ → 0 and τ → ∞, thus giving
a good estimate of the solution of radiative transfer problem at the surface and
in the deep of stellar atmospheres.

Optically thin media and the Eddington Barbier approximation

The Eddington-Barbier approximation is based on the assumption that the
Source function can be expressed as a linear function of the monochromatic
optical radial depth:

Sν = a + bτν (5.37)

the outgoing and incoming radiation are then

Iout.(τν , µ) = a + bτν + bµ, 0 ≤ µ ≤ 1 (5.38)

Iinc.
ν (τν , µ) = a + bτν + bµ − (a + bµ)eτν/µ, −1 ≤ µ ≤ 0 (5.39)

and the other moments are

Jν(τν , µ) = a + bτν +
1

2
[bE3(τν) − aE2(τν)] (5.40)

Hν(τν , µ) =
1

3
b +

1

2
[aE3(τν) − bE4(τν)] (5.41)

Kν(τν , µ) =
1

3
(a + bτν) +

1

2
[bE5(τν) − aE4(τν)] (5.42)

where En is the exponential integral and is defined has

En(x) ≡
1
∫

0

exp−x/µ µn−1 dµ

µ
(5.43)

An example of exponential integrands of order n = 2, 3, 4 and relative integrand
functions is given in fig.5.2

The case in which τ = 0 is particularly instructive. One finds in fact that

Iout.
ν (0, µ) = a + bµ, 0 ≤ µ ≤ 1 (5.44)

Iinc.
ν (0, µ) = 0, −1 ≤ µ ≤ 0 (5.45)

Jν(0, µ) =
1

2
a +

1

4
b (5.46)

that shows that Jν(0) < Sν(0) if b is small. From eq.5.44 it follows that

Iout.
ν (0, µ) = Sν(τ = µ) (5.47)

This last relation indicates that outgoing intensity radiation seen by an observer
’far’ from the star decreases toward the limb of the sun and is maximum at its
center. This approximation thus describes the center to limb variation (CLV)
of intensity observed on the sun and other stars. Similarly Hν(0) = 1

4a + 1
6b

and hence Fν(0) = a + 2
3b = Sν(τν = 2

3 ).
The case of a homogeneous medium in which S = a is called Lambert ra-

diator. Under this hypotheses Iout(0, µ) = a and Iinc.(0, µ) = 0 and therefore
F (0) = a.



www.manaraa.com

Radiative properties of complex magnetic elements 72

Figure 5.2: Integrand function exp−x/µ µn−1/µ (left) and Exponential Integrals
for orders n = 2, 3, 4. Note that the exponential integral of order 1 has a
singularity at x = 0.

Optically thick media: the Radiative Diffusion approximation

In the limit τ → ∞, intensity and its moments are given by:

Iout.
ν (µ) = Iinc.

ν (µ) = Sν(τν) + µ
dSν(τν)

dτν
+ µ2 d2Sν(τν)

d(τν)2
+ ... (5.48)

Jν(τν) =
∞
∑

k=0

1

2k + 1

[

d2kSν(τν)

d(τν)2k

]

τν

(5.49)

Fν(τν) =

∞
∑

k=0

4

2k + 3

[

d2k+1Sν(τν)

d(τν)2k+1

]

τν

(5.50)

Kν(τν) =
1

3

∞
∑

k=0

3

2k + 3

[

d2kSν(τν)

d(τν)2k

]

τν

(5.51)

It can be shown that series converge at large optical depth (Cox and Giuli,
1968).

5.2 Radiative Equilibrium Gray atmosphere

In this paragraph I consider an atmosphere in which radiation is the only energy
transport mechanism. Then the total radiative flux FRad equals the total energy
flux F :

FRad(z) ≡
∞
∫

0

Fν(z)dν = F (5.52)

where

F (z) =
L⊙

4πR2
⊙

= σT 4
eff (5.53)
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L⊙ and R⊙ are the solar luminosity and the radius, Teff is the temperature of
a black body whose total radiation equals that measured for the sun (or, more
in general, for the star). The Radiative equilibrium condition is, using eq.5.25,

dF (z)

dz
= 4πkρ(J(z) − S(z)) = 0 (5.54)

For a non plane parallel atmosphere, previous relation is written

∇ · F = 4πkρ(J − S) = 0 (5.55)

follows that, in RE approximation, S(z) = J(z). It can be shown (Mihalas and
Weibel-Mihalas, 1999) that previous equation has a solution if

J(τ) =
3

4π
F · (τ + q(τ)) (5.56)

where q(τ) is the Hopf function. This means that in RE both J and S are
approximately linear functions of optical depth. Applying LTE condition one
also finds

T (τ)4 =
3

4
T 4

eff · (τ + q(τ)) (5.57)

The problem of the Gray atmosphere consists in finding q(τ). A common ap-
proximation consists in assuming that this function has constant value 2

3 , so
that

J(τ) =
3

4π
F · (τ +

2

3
) (5.58)

and therefore

T (τ)4 =
3

4
T 4

eff · (τ +
2

3
). (5.59)

This approximation is valid if J = 3K. From equations 5.49 and 5.51 this
last condition is valid if τ ≫ 1 and the Source function varies linearly with
τ . In general it is exact for isotropic radiation and for the cases in which the
intensity can be expanded as only odd powers of µ. It is also valid in the
two stream approximation, that is in the case the outgoing and the incoming
radiations are two different functions of τ but are independent on the line of
sight angle cosine µ. The Lambert radiator case satisfies these requirements.
On the other end the assumption is not valid at the surface in the Eddington-
Barbier approximation, since Iout. varies linearly with µ, but Iinc. does not.
The assumption of validity of J = 3K in other cases other than these ones is
called Eddington approximation.

The exact solution to the Gray problem gives q(0) = 0.577... and q(∞) =
0.710..., compared to the assumed value q = 2/3 = 0.666.... The error is largest
at the surface; it can be shown though that for instance at τ = 0 the ap-
proximation leads to an error in the estimation of J of about 15% (Mihalas
and Weibel-Mihalas, 1999) and that the source function ”yields a reasonably
accurate angular distribution of the intensity”.

5.3 Numerical solution to the RTE: The Short

Characteristic

The formal solution to the Radiative Transfer Equation is given by equation
5.17, that requires the knowledge of optical depth, or density and opacity func-
tions, and source function in the domain. In stellar atmosphere problems usually
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these quantities are not expressed as analytical functions, but are tabulated as
explained for the opacity in 5.1.5. The intensity radiation field thus has to be
estimated numerically. Note that, besides some particular models, in which ex-
ist an analytical solution of integrals in eq.5.18 and eq.5.20, intensity radiation
is estimated numerically even when the atmosphere is specified by analytical
functions of depth or optical depth. In the following I present the numerical
technique I adopted to solve this problem.

As already mentioned in chapter 4, the solution of energy equation 4.6 re-
quires the evaluation of radiative flux F. In the flux tube models I developed
(see chapter 7) the evaluation of the Intensity mean radiation field J is also
required. F and J are the integrals over the solid angle of the first and zero
moments of radiation intensity (eq.5.22 and 5.21 respectively). Integrals are
usually numerically estimated by a quadrature technique, that is by an oppor-
tune linear combination of the integrand function evaluated at some points in
the interval of integration. Weights and points (in this case directions) are given
by the particular scheme chosen. One therefore needs to estimate at each point
of the domain and for each direction the radiative intensity. Spatial domain
is discretized by a grid (fig.5.3)at which at the top and the bottom boundary
conditions for the intensity field are assumed. Horizontal periodical boundary
conditions are also assumed. Intensity radiation at a generic point O of the
grid is given solving, for each direction, the equation 5.16, that is by eq.5.17.
This problem is solved by the Short characteristic technique (Kunasz and Auer,
1988) that allows to estimate the intensity radiation, given a Source function
and the product of the density and the opacity (in the following α function) at
each point of the domain. Since the method is numerical, it does not require
an analytical form for these functions, but just their values at each point of the
domain. By using notation in fig.5.3, and assuming a Gray atmosphere, the
radiative transfer equation has solution

IO(µ) = IM (µ) · e−∆τM +

∆τM
∫

O

S(t)e−(∆τM−t)dt (5.60)

where

∆τ = τi−1 − τi =

si
∫

si−1

α(s)ds (5.61)

here s is the space distance travelled along the direction of propagation by the
ray, M is at coordinate (i − 1), O at coordinate (i) and P at coordinate (i+1),
as shown in fig.5.4. The method basically consists in evaluating integrals in
eq.5.60 and eq.5.61 locally by a polynomial expansion of α and source function.
In the following I will also consider the case in which opacity and density are
given, since this is the case of the simulations I have been running, although
the problem can be solved even by knowing the product α of these functions.
In the following I will describe integration schemes proposed by Bruls et al.
(1999), while in the next chapter other schemes and a comparison among them
is described. To solve integral in eq.5.61 let us consider a second order Taylor
expansion of the opacity k:

k = kO + k1 · (si − si−1) + k2 · (si − si−1)
2 (5.62)
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Figure 5.3: The Short Characteristic allows numerical evaluation of intensity at
each point of a grid. In this 2D scheme, boundary conditions are imposed at the
top and at the bottom (thick horizontal lines), and periodic horizontal conditions
are imposed (dashed vertical lines). Intensity at each generic point O of the
grid is evaluated by integration techniques, and thus requires to know opacity,
density and source function values at points M (upwind) and P (downwind), as
well as the intensity value at point M. These points don’t belong to the grid, so
quantities at this locations are estimated by interpolation.

where kO is the opacity evaluated at point i, and k1 and k2 are given by

k1 =
∂k

∂s

∣

∣

∣

∣

i

=

ki+1−ki

∆si+1
· ∆si − ki−ki−1

∆si
· ∆si+1

∆si+1 + ∆si
(5.63)

k2 =
1

2
· ∂2k

∂s2

∣

∣

∣

∣

i

=

ki+1−ki

∆si+1
− ki−ki−1

∆si

∆si+1 + ∆si
(5.64)

and ∆si = si+1 − si. Let us also expand the density at the first order

ρ = ρO + ρ1,j · (s − si) (5.65)

where ρO is the density evaluated at point i and j=0,1, with

ρ1,j =
ρi+1−j − ρi−j

si+1−j − si−j
(5.66)

The use of different order expansions for opacity and density is legitimated by
the fact that usually opacity is a power function of density, as explained in
previous paragraphs.

Integral in eq.5.61 is thus approximated by the formula

∆τi−j+1 = kOρO∆si−j+1 +
−1j+1

2
(k1ρ0 + k0ρ1,j)∆s2

i−j+1 +

+
1

3
(k2ρ0 + k1ρ1,j)∆s3

i−j+1 +
−1j+1

4
k2ρ1,j∆s4

i−j+1 (5.67)

In this notation j=1 when the optical depth is estimated integrating between
si−1 and si, and j=0 when the integration is between si and si+1.
A similar integration scheme is used also to evaluate the integral in eq.5.60. Let
us in fact expand the source function at the second order:

S(τ) = SO + S1τ + S2τ
2 (5.68)

where SO is the Source function evaluated at point i and
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Figure 5.4: A ray is propagating along direction W , that intersects the grid at
points i − 1, i and i + 1, corresponding to points M, O and P respectively in
fig.5.3.

S1 =
∂S

∂τ

∣

∣

∣

∣

τi

=

Si−1−Si

∆τi+1
· ∆τi+1 − Si−Si+1

∆τi+1
· ∆τi

∆τi+1 + ∆τi
(5.69)

S2 =
1

2
· ∂2S

∂τ2

∣

∣

∣

∣

τi

=

Si−1−Si

∆τi
− Si−Si+1

∆τi+1

∆τi+1 + ∆τi
(5.70)

Using a quadrature technique at second order

∆I =

∆τi
∫

0

dτS(τ)e−τ =

2
∑

n=0

ωn(∆τn)Sn (5.71)

where

ω0 = 1 − e−∆τi

ω1 = ω0 − ∆τie
−∆τi

ω2 = 2ω1 − ∆τ2
i e−∆τi

After some algebra it follows that

∆I = Ωi−1Si−1 + ΩiSi + Ωi+1Si+1 (5.72)

where

Ωi−1 =
ω2 + ω1 · ∆τi+1

∆τi(∆τi + ∆τi+1)

Ωi =
ω1(∆τi − ∆τi+1)

∆τi · ∆τi+1
+ ω0

Ωi+1 =
ω2 − ω1 · ∆τi

∆τi+1(∆τi + ∆τi+1)

In previous calculations a second order expansion is used, but higher orders can
be implemented depending on the problem to solve. Since generally density and
opacity are continuous functions of height, low order expansions yield good ac-
curacy calculations. In the next chapter I discuss and compare results obtained
with higher order integration schemes.
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Figure 5.5: Case a): upwind point M lies in between two points of the grid A and
B, therefore IM is estimated through interpolation. Cases b): M lies on a column
in between points A and D. If ID is known, IM is evaluated by interpolation. If
ID is not known, because for instance O is the first of the row at which intensity
has to be evaluated, then interpolation is not possible. In this case, if the grid
is irregular, the algorithm looks for the first point on the grid at which M lies
on a row, like in case b1). he case in which the grid is regular is illustrated in
fig.5.6. Intensity at subsequent points is evaluated sweeping the grid according
to the beam direction and applying horizontal periodic conditions.

5.3.1 Propagating the intensity on the grid

Given the boundary intensity conditions, intensity is evaluated at each point of
the grid row by row, with the prescription that the intensity is evaluated on the
next row only when it has been evaluated on all the points of the previous row.
Since periodic conditions are imposed on vertical boundaries, the intensity has
the same value on the first and last point of the grid, and the first point processed
is the second of the row. From what explained in the previous paragraph, it is
clear that to evaluate the intensity on point O of the grid, one must know the
intensity in the previous point M and the opacity, the density and the source
function on points M, O and P, where M and P do not belong to the grid, so that
interpolation is needed. Since S, k and ρ are known on the grid, the evaluation
of this quantities by interpolation is always possible, while this is not the case
for the intensity. In particular the estimation of the upwind intensity of the
first point of the row at which intensity is evaluated can be problematic. In fact
let us consider the cases in fig.5.5, where point O is the second of the row (the
first on which intensity is evaluated). In cases in which M is in between two
points of the previous row, like case a), intensity at point M can be estimated
interpolating between them. In case b), M lies on a column and its closest
points are A and D. Since intensity at point D is not known, interpolation
is not possible and intensity at point M cannot be estimated. If the grid is
regular, and case b) is verified at the second point of the grid, than it is verified
at each point of the grid. However, if the grid is irregular, than might exist a
point of the grid at which case a) is verified, as illustrated in case b1). In this
situation the first point of the grid at which intensity is evaluated is the first one
of the row that satisfies condition a). Intensity on subsequent points can then
be evaluated since now the intensity is known on the previous point (point O’
in case b1)) and interpolation is possible. Intensity on remaining points of the
row (for instance point O in case b1)) is evaluated imposing horizontal periodic
conditions.

If the grid is regular or if in general cases a) are never found, than inten-
sity at point O can be evaluated propagating from the first point of the ray
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Figure 5.6: For some directions and grid shapes, the closest upwind point M
never lies on a row. We then look for further points until the first one that
intersects a row. Intensity is then evaluated at other upwind points (M1 and
M2 in this case) and finally at point O, using the same integration schemes
described in the text. Note that in this case intensity is known by interpolation
at point M, by which intensity at point M1, is known. Intensity estimation at
M2 and then at O is based on intensity estimation at M1 and M2 respectively.

that intersects the grid on the previous row, as shown in fig.5.6. Intensity on
intermediate points is evaluated using the same procedure used for points on
the grid. For very shallow angles the ray could never intercept the row and for
horizontal directions intensity cannot be estimated by this technique. For this
reason it is important to chose a quadrature scheme (necessary to evaluate flux
and mean intensity) in which the prescribed directions are not shallow.

The interpolation order used to estimate the various variables on points that
are not on the grid is an important aspect of the algorithm. Generally a second
order interpolation is employed, since this is the order used to evaluate the
integrals. This kind of interpolation requires the knowledge of the quantity to
interpolate on at least three points, a request that, as already explained, cannot
always be matched. For this reason an asymmetric second order interpolation
is generally employed, with the prescription of using first order interpolation for
cases b) of the first row of the grid. There are other cases in which a first order
interpolation is preferred to a second one and will be discussed in the following
chapter.

5.4 Quadrature techniques

Once the intensity field is evaluated, the aim is to evaluate the radiative flux
F or the mean intensity J defined in eq.5.21 and eq.5.22. These are integrals
over the solid angle and can be numerically evaluated by quadrature techniques.
Quadrature techniques are useful tools to estimate the integral of a function by
a proper linear combination of the values assumed by the integrand function
itself at some points in the integration range. In formula:

∫ b

a

f(x)dx =

N
∑

i=1

vif(xi), xi ∈ [a, b] (5.73)

N is the number of points in the interval and is generally referred as the order
of quadrature, while vi are the weights of the quadrature.
Depending on points xi and weights, many different schemes exist. The most
popular is the Gauss Legendre, in which points and weights are found imposing
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Figure 5.7: The direction of a vector is expressed by its director cosines, that
is by the cosines of the angles between the vector and the three axes x,y,z. We
thus define µ = cosα, ξ = cosβ, η = cos γ. Because of condition 5.75 a direction
is defined by only two of the director cosines.

the integral to be exact for a Legendre polynomial of order N. In the following
I will describe two techniques. The first one is the Carlson scheme (Carlson,
1963), the most used in radiative transfer problems, the second one is based on
a Gauss Legendre scheme. A comparison of the two techniques is given in the
next chapter.

5.4.1 Carlson schemes

In spherical geometry directions are easily represented by direction cosines, i.e.,
the cosines of the angles between the vector that defines the direction and (x,y,z),
as shown in fig.5.7. We define µ = cosα, ξ = cosβ, η = cos γ, where

µ2 + ξ2 + η2 = 1 (5.74)

The last condition reduces the degrees of freedom, so that just two cosines are
necessary to define a direction. Moreover, we impose the directions and weights
to be invariant respect to rotation about the particular axis. This means that
we impose the projection of the direction on any of the axis, and the relative
weights, to be independent from the particular axis. This conditions reduces
further the degree of freedom, so that the directions can be described by one
cosine, say µ. Each direction is thus described by (µl,µm,µk), or, more easily,
by the set (l,m,k). Since µ varies from -1 to 1, our analysis can be restricted
to a quadrant. We can therefore use a 1-D scheme and look for the set of
{µl} level cosines with relative weights {wl}. The direction weights {vj} are
subsequently retrieved by using, again, symmetry consideration and imposing
that the sum of vj ’s on a level equals the relative wl. Figure 5.8 illustrates
the points distribution on an octant for different values of N, where numbers
in circles are (l,m,k). Here, in counting levels with respect to the x-pole, we
start near the side opposite to x and then move toward the pole, and similarly
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Figure 5.8: Directions and symmetry classes for first N=8 quadrature orders
in the Carlson scheme. Numbers in circles indicate the three direction cosines
that identify each directions. Numbers under the circle indicate the group of
symmetry (and thus the weight). On each l level there are nl = N/2 + 1 − l
points. For instance, if N=8 and l=1 then n1 = 4, if N=6 and l=2 then n2 = 2.
From Carlson (1963).

for levels with respect to y and z. There are N(N+2)/8 points per octant in
this scheme. An octant exhibits N/2 of the µ levels; a quadrant all N of them.
Inspection of fig.5.8 shows that level cosines must satisfy the relation:

µ2
l + µ2

m + µ2
N/2−l−m+2 = 1 (5.75)

where l=1,2,3,...N/2; m=1,2,3..N/2-l+1. This condition stems from the sym-
metry requirements and relation (1). Fig.5.8 also shows that points fall into
three types of symmetry class: classes of points with six members (for which
l 6= m 6= k), classes of points with three (for which l = m 6= k, and permu-
tations), classes with one (l=m=k). Symmetry requires that points within a
given class have identical weights {vj}. In fig.5.8 the j class is indicated under
the circles. In analogy with Gaussian quadrature, we also require the following
conditions to be satisfied:

N
∑

l

wl = 2 (5.76)

N
∑

l

wlµl = 0 (5.77)
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N
∑

l

wlµ
2
l =

2

3
(5.78)

The first condition 5.76 is the solid angle normalization. In the general case,
the sum extends over one, two, or four quadrants, depending on the geometry
of the problem (1D, 2D or 3D respectively). The second condition reflects a
symmetry about µ = 0. Relation 5.78 guarantees that points of the same class
have the same weight. To make clear the last statement, let us rewrite relation
5.76 in terms of v′js, for instance for the case N=8. For the sake of simplicity
let us restrict calculation to one octant:

w1 + w2 + w3 + w4 = v3 + 2 · v2 + 2 · v2 + v1 + 2 · v3 + 2 · v2 =

= 3 · v3 + 6 · v2 + v1 = 1 (5.79)

Relation 5.78, in terms of v′js, is:

4
∑

l=1

wlµ
2
l = v3 · µ2

4 + 2 · v2 · µ2
3 + 2 · v2 · µ2

2 +

+ v1 · µ2
2 + 2 · v3 · µ2

1 + 2 · v2 · µ2
1 =

= v3 · (µ2
4 + 2 · µ2

1) + v2 · (2 · µ2
3 + 2 · µ2

2 + 2 · µ2
1) + v1 · µ2

2 =

= v3 + 2 · v2 + v1/3

Where last passage stems from eq.5.75. Finally, by comparison with eq.5.79:

4
∑

l=1

wlµ
2
l = 1/3 (5.80)

Because of symmetry we expect the last summation to give the same result
when evaluated for the other octant, so that the sum on the whole quadrant is
2/3 and relation 5.79 is proofed.

It is also worth to notice that conditions 5.76, 5.77 and 5.78 are related to
the first three intensity moments of a uniform (isotropic) radiation field. The
first one is the normalization of mean intensity integral J, the second guarantees
flux value is zero, the third one the K-integral to be equal to diag(J/3).

In the following I will restrict the analyses to one octant, results being sym-
metric, because of relation 5.77, at the other octants. It is also worth to notice
that odd N-values give directions along axes. Since intensity along these direc-
tions cannot be evaluated by the Short Characteristic technique described in
previous paragraphs, discussion will be restricted to even N-values.

Relation 5.80 has a very simple solution derived from the fact that the indices
sum to N/2+2, namely

µ2
l = µ2

1 + (l − 1) · ∆ (5.81)

where
∆ = 2 · (1 − 3 · µ2

1)/(N − 2). (5.82)

Hence, if µ1 is given, all other µ’s can be calculated, the value of µ1 defining
the spread of the points on the octant. If we now let W1 = w1, W2 = w1 + w2,
.....,Wl = w1 + w2... + wl, we find, making use of 5.81 and 5.78, that

N/2−1
∑

l=1

Wl = (N − 2)/3. (5.83)



www.manaraa.com

Radiative properties of complex magnetic elements 82

N ǫN

4 0,0
6 0,00416667
8 0,00539164
12 0,00592059
16 0,00583892

Table 5.1: Values of ǫ for some of the first quadrature orders N. At orders higher
than the ones shown ǫ goes to zero. Adapted from Carlson (1963).

In Gauss quadrature scheme the µ’s are approximately equal to the cosines
of a set of angles linear in l, and the weights corresponding to Wl approximately
equal the cosines of the equidistant midpoint angles. In our case we have lin-
earity in µ2 and the transformation is square root rather than cosine. Hence,
by analogy,

W 2
l = W 2

1 + (l − 1) · ∆ l = 1, 2, ...N/2− 1. (5.84)

This relation, making use of eq.5.83, has solution

∆ = 2/(N − 1), W 2
1 = (4 + ǫN)/3(N − 1) (5.85)

where ǫN is a small quantity whose values for some N ’s are shown in table 5.1.
These values can be evaluated substituting ∆ = 2/(N − 1) into eq. 5.84 and
then evaluating the summation 5.83. At larger N, ǫ goes to zero. Continuing
the analogy we write µ2

1 = W 2
1 − ∆/2, that, in combination with eq.5.82, gives:

µ2
1 = 1/3(N − 1) (5.86)

The set of level cosines and the relative weights are henceforth derived. The
point (or class) weights are then calculated as described above. This method
does not allow to evaluate more than N/2 -1 different class weights. There are
that many for n=4, 6, 8, 10 and 12. After that the number of classes grows very
fast and is not possible to find a unique solution.

As an example in the following I derive weights and levels for the case N=12.
Let us divide the evaluation in the following four steps:

Wl ’s calculation:

According to 5.85 and table 5.1

W 2
1 = (4 + 0.00592049)/33 = 0.12139153, (5.87)

and, using 5.84,

W 2
2 = W 2

1 + 2/11 = 0.30320971,

W 2
3 = W 2

1 + 4/11 = 0.48502790,

W 2
4 = W 2

1 + 6/11 = 0.66684608,

W 2
5 = W 2

1 + 8/11 = 0.84866426.
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Level weights wl’s calculation:

The first N/2-1 level weights are calculated, according to Wl’s definition, by
inverting the following system of equations:

W1 = w1,

W2 = w1 + w2,

W3 = w1 + w2 + w3,

W4 = w1 + w2 + w3 + w4,

W5 = w1 + w2 + w3 + w4 + w5.

The last weight is calculated imposing 5.76:

w6 = 1 − w1 − w2 − w3 − w4 − w5. (5.88)

wl’s values are presented in table 5.2.

Level cosines µl’s calculation:

According to eq.5.86
µ2

1 = 1/33 (5.89)

and then, by using relation 5.84:

µ2
2 = µ2

1 + 2/11 = 0.030303030,

µ2
3 = µ2

1 + 4/11 = 0.21212121,

µ2
4 = µ2

1 + 6/11 = 0.39393939,

µ2
5 = µ2

1 + 8/11 = 0.57575758,

µ2
6 = µ2

1 + 10/11 = 0.93939394.

Points weights vj’s calculation:

According to fig.5.9, classes weights (or points’ weights), are evaluated by solving
the following system of equations:

w6 = v1,

w5 = 2 · v1,

w4 = 2 · v3 + v5,

w3 = 2 · v3 + 2 · v4,

w2 = 2 · v2 + 2 · v5 + v4,

w1 = 2 · v1 + 2 · v2 + 2 · v3.

One equation, let us say the last one, is redundant. Inversion of the first five
conditions leads:

v1 = w6,

v2 = w5/2,

v3 = 0.1 · (4 · w4 + w3 − 2 · w2 + 2 · w5),

v4 = (w2 + 2 · w3 − 2 · w4 − w5)/5,

v5 = (w4 − w3 + 2 · w2 − 2 · w5)/5.
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Figure 5.9: Directions and weights for N=12.

lorj wl µl µ2
l vj

1 0.34841288 0.17407766 0.030303030 0.078770246
2 0.20223194 0.46056619 0.21212121 0.052311657
3 0.14579462 0.62764591 0.39393939 0.043124537
4 0.12016700 0.75878691 0.57575758 0.029772776
5 0.10462331 0.87038828 0.75757576 0.033917925
6 0.078770246 0.96922337 0.93939394

Table 5.2: Level l and corresponding level weight, director cosine and its square
value, direction weight, for N=12.
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5.4.2 Gauss Legendre scheme

In order to increase the number of points an other technique was developed.
I will refer to it as the Gauss-Legendre method. We have to solve the double
integral:

I =

∫ 2π

0

dφ

∫ π

0

f(θ, φ)dθ (5.90)

or, changing variable,

I =

∫ 2π

0

dφ

∫ 1

−1

f(µ, φ) · µdµ (5.91)

The integral in µ is solved by a Gauss-Legendre scheme (e.g. Press et al., 1994).
The set {φ} is evaluated imposing that on the n-th µ-level there are n directions
equidistant in φ. The scheme obtained is similar to the one illustrated in fig.5.8,
but symmetry about the three axes (x,y,z) is lost. Weights are estimated impos-
ing that points of a level have the same weight and that their sum is the level
weight. Directions in this scheme are represented by the system of variables
[θ, φ] rather than by director cosines used in the previous case.
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Chapter 6

Preliminary Tests

In this chapter I illustrate results obtained by tests I performed to evaluate the
errors introduced by numerical techniques employed and described in previous
chapter. I particularly investigate error sources in the evaluation of radiation
intensity field by short characteristic and errors in mean intensity and radiative
flux introduced by the quadrature techniques developed.

For what concerns the intensity radiation field, I analyze the errors obtained
with different integration and interpolation schemes at different ray direction
and spatial resolution. Spurious effects introduced by interpolation schemes are
investigated by the Search Beam technique.

Quadrature technique problems are investigated by the analyses of errors
obtained in the evaluation of J and flux for the case of a Lambert radiator
atmosphere.

Results presented allowed me to choose, among the different techniques em-
ployed, the ones that lead to more reliable results in the problem I am addressing
in this thesis: the investigation of radiative properties of magnetic flux tubes.

6.1 Integration techniques

In order to explore dependency of the results on different integration techniques,
I have compared results obtained in the evaluation of optical depth τ , that, as
already explained, requires the evaluation of:

τν(D) =

D
∫

0

αν(s)ds (6.1)

where D is the depth of a finite slab, α is the product of density and opacity
and s is the optical path. Integration techniques other than the one explained
in chapter 5, based on a second order expansion of opacity k, a linear expansion
of density ρ and second order expansion of source function S, have been tried.
Particularly, I compared results obtained with the following schemes:

• Second Order expansion (SO in the following): the integral is evaluated
expanding the opacity at the second order and the density at the first
order, as indicated in previous chapter.

86
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• Second Order α expansion (SOα in the following): α function, the prod-
uct of opacity and density, is expanded at the second order, so that τ is
evaluated as a third order polynomial.

• Higher Order expansion (HO in the following): both opacity and den-
sity are expanded at second order, so that τ is evaluated as a fifth order
polynomial.

• Finite Differences (FD in the following): finite difference formula have
been used to evaluate both opacity and density at the second order, so
that τ is evaluated at fifth order. Using the same notation of previous
paragraphs, and letting s be the grid space, and x the ordinary space

k1 =
∂k

∂s

∣

∣

∣

∣

xi

=
∂k

∂x

∂x

∂s
=

ki+1 − ki−1

si+1 − si−1

k2 =
1

2

∂2k

∂s2

∣

∣

∣

∣

xi

= 2
ki+1 − 2ki + ki−1

(si+1 − si−1)2
− 2

(si+1 − si) − (si − si−1)

(si+1 − si−1)3
(ki+1 − ki−1).

FD results and HO results must coincide on a regular grid (see appendix
to this chapter for a more detailed calculation).

• Finite differences for α expansion (FDα in the following): previous formu-
lae are used to expand α function at second order, so that τ is evaluated
at the third order.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

SO
SO
HO
FD
FD

re
la

tiv
e 

er
ro

r

resolution
0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.025

0.050

0.075

0.100

 SO
 SO
 HO
 FD
 FD

re
la

tiv
e 

er
ro

r

resolution

(a) Regular grid (b) Irregular grid

Figure 6.1: Relative error in the evaluation of the optical depth in the case
both density and opacity are exponential functions of the depth and for different
integration schemes described in the text. In the case of a regular grid, resolution
is given by ten times the length of each spatial step (ratio of the total space S
along the vertical direction and the number of intervals it is subdivided into).
In the case of irregular grids, resolution is the smallest spatial step of the grid
multiplied by ten. The error is the relative difference among the analytical
solution of the integral and the numerical one at the top of the grid, that is at
spatial coordinate S.
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In order to compare the different techniques I have evaluated the optical
depth in the case of a vertically stratified atmosphere, uniform along the hori-
zontal direction. Results have been compared for different functions of opacity
and density and for different resolutions in the case of regular and irregular
grids. Regular grids where constructed dividing a fixed spatial interval S in to
N equally spaced steps. Irregular ones have been constructed so that the to-
tal space S is dived into N not equally spaced steps. In particular the grid
is symmetric for a reflection respect to the middle of the vertical direction
and the spatial length of n-step is s(n) = n ∗ S/N for n = (1, ..., N/2) and
s(n) = (N − n + 1) ∗ S/N for n = (N/2 + 1, ..., N). Plot on the left of fig.6.1
shows for instance absolute relative errors respect to the analytical value of opti-
cal depth obtained when opacity and density are exponential decaying functions
of space and a regular grid is used for the five integration schemes. As expected,
FD and HO expansions coincide, as well as SOα and FDα. Plot on the right
of fig.6.1 shows results obtained for the same functions, but with an irregular
grid. In this latter case the Finite Differences results (FD and FDα) are affected
by higher errors than the results obtained with HO and SOα schemes, as ex-
pected by calculation shown in the appendix to this chapter. Moreover regular
grid seems to lead better results for low resolution, while when resolution is
increased no differences are evident between the two kind of spacing.

Results shown in fig.6.1 are not surprising. The SO technique produces the
worst results because the density is known at the first order, and so the integral
of the product of density and opacity. The HO technique produces better results
respect to the SOα one because, as demonstrated in appendix to this chapter,
the error in the Taylor expansion of a function that is the product of other two
functions is different (in this case is less, due to the derivatives of the functions)
if the expansion is performed before the product.

6.2 Interpolation effects: Search Beam technique

As explained above, interpolation is a crucial aspect of Short Characteristic. We
expect it to be a source of uncertainties, especially in the case of not uniform
or discontinuous atmospheres, such as in the presence of flux tubes. Two in-
terpolation schemes have been implemented and tested: first order and second
order.

For what concerns the second order, when symmetric second order interpo-
lation is not possible, the following procedures have been adopted to make the
algorithm work properly and prevent non-physical results :

• when evaluating intensity on the first row, if the upwind point lies on
a column, a fist order interpolation is used, since not enough points are
available for a second order.

• right or left second order asymmetric interpolation schemes are used de-
pending on the direction of the beam and the position of the point on the
grid.

Additionally in some cases interpolation can create sources or sinks, which
can lead to non physical results such as negative intensity. To avoid these
problems, a first order interpolation is used if the points used for interpolation



www.manaraa.com

Radiative properties of complex magnetic elements 89

Figure 6.2: Differences between strict and non strict interpolation. Left: when
intensity at interpolation point X is less then intensity at interpoland points
(A,B,C), a linear interpolation is used in both schemes. Right: The interpolated
intensity value I(X) is in between the intensity values at interpoland points, but
the interpoland function (continuous line) assumes lower values. In this case
a linear interpolation is used if strict monotonicity is imposed, while a second
order is used in non strict scheme.

do not satisfy monotonicity condition. This issue is illustrated in fig.6.2. We
want to estimate intensity at point X, that lies between the grid points B and
C. A third point, A, is needed to perform a parabolic interpolation. If the
estimated I(X) is greater or lower then the intensity values at interpoland points
A,B,C, than I(X) is reevaluated using a first order scheme. It can also happen
(right picture in fig.6.2) that the interpolated function assumes values higher
or lower than the intensity at interpoland points, but I(X) is still bracketed by
I(B) and I(C). In this case we can either keep the intensity value obtained, or
reevaluate it with a first order scheme. Both schemes have been investigated. I
will refer to the first one as non strict monotonicity and to the second one as
strict monotonicity.

The Search Beam technique consists in the evaluation of intensity of a beam
in vacuum, i.e. when density, opacity and Source function are set to zero. In
this case, the intensity value evaluated at each point of the grid corresponds
to the upwind intensity value (points indicated with X in fig.6.4 and fig.6.6).
Since, as shown in previous chapter, in general the upwind point does not lie
on the grid, its intensity value has to be determined by interpolation. If no
computational error was present, intensity at the top of the grid would be the
same as the boundary condition at the bottom. As will be shown this is not the
case due to interpolation spurious effects. By the analysis of results obtained
with three different boundary conditions, namely a δ function, a step function
and a Gaussian function, I have observed indeed that the intensity profile at the
top of the grid is:

• Broadened

• Asymmetric

• Peak is attenuated

• Peak is shifted

• Power is not conserved
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(a) δ function (b) Gaussian function (c) Step function

Figure 6.3: Upper panel: Intensity values on the grid of a beam that propa-
gates in vacuum at an angle of 30◦ respect to the horizontal direction when
three different boundary conditions are imposed at the bottom. The grid size
is 100×100 and the Second Order non strict interpolation scheme is employed.
Lower panel: Intensity profile at the top of the grid for the three cases. Hor-
izontal axis describes the horizontal position (in pixel) on the grid. The three
boundary functions have a maximum intensity of 10 (arbitrary units). Both
upper and lower panels show that the beam is deformed and attenuated. Note
also the effects of the horizontal periodic conditions.
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Pictures in fig.6.3 show ray intensity on the grid (upper panel) and the in-
tensity profile at the top of the grid (lower panel) in the case of a beam that
propagates on a uniform grid along a direction that forms an angle of 30◦ respect
to the horizontal direction, for the three boundary conditions, and for non strict
second order interpolation. Pictures show clearly that the beam is attenuated,
broadened and asymmetric. The amount of all these ’aberrations’ depends on
the interpolation technique adopted, and is more evident for the delta and step
functions boundary conditions since these are discontinuous functions.

Broadening is in general more evident for first order interpolation schemes
and for shallow angles, since these directions experience a coarser grid and
require a higher number of interpolations. Asymmetries are mostly due to the
way the grid is swept, and are more evident for second order interpolation
schemes and shallow angles. Let us consider, for instance, an angle of 30◦

respect to the horizontal direction, as in fig.6.4. Open circles represent points of
the grid in which intensity is zero or not evaluated by the code. The full black
circle is the boundary condition (a Delta function in this case, since only one
point of the initial row is not zero) and the gray and shaded circles are points
at which the intensity is evaluated by the code. Point A is the first point from
the left on the first row (the closest to the boundary) whose intensity is not
zero. The upwind point that allows the evaluation of I(A) lies on the previous
row far from the beam (full black dot). Intensity at all the other points of the
row (B,C,D) is obtained interpolating vertically between points of the previous
column, so that the intensity assumes its maximum value in A and smaller and
smaller values as we proceed along columns. This produces the peaked intensity
profile with the long tail on the right shown in fig.6.5. As we proceed on the rows
the curve gets more symmetric due to interpolation, that spreads the signal. The
first point on the grid whose value is not zero is always shifted of one position
to the right respect to the point at previous row. The corresponding upwind
point lies always on the previous row, between two points of which only the one
on the right has not null intensity. Its value is thus smaller and smaller as we
proceed up on the grid, and the maximum of the intensity profile at each row
shifts to the right, to points whose intensity is evaluated interpolating between
points whose intensity is not null. Figure 6.5 shows also that asymmetries are
more evident for second order interpolation, since the first order is a procedure
that intrinsically tends to broad the signal more than the second order.

For directions closer to the vertical axis the broadening on the right is less
evident, since, except for points closer to the beam, intensity on interpoland
points is always zero, as illustrated in fig.6.6. At the first row, intensity is not
zero only at points A0 and A, with the maximum at A. At the second row,
intensity is not null at points A0’, A’ and B’ and so on. As we proceed to the
top, a small broadening on the right is observed, due to the fact that intensity
at points A0, A0’, A0” etc. is not zero. A comparison of beam profiles in fig.6.5
and fig.6.7 shows that the beam ’aberrations’ are less important for vertical
directions.
An other source of asymmetries is the condition of strict monotonicity, since for

some angles points close to the beam can be interpolated linearly or at second
order depending if they are on the right or on the left of the beam. Fig.6.8
illustrates these aspects: the right sides of the curves coincide for strict and
non strict cases, while they differ in the left sides, the strict case using a linear
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Figure 6.4: Gray circles: points of the grid on which intensity is not zero. Black
circle: points at which boundary conditions are imposed. Radiation propagates
at an angle of 30◦ respect horizontal to direction. Shaded circles: points at
which intensity is not zero because of periodic condition. Symbol X: upwind
point from which the intensity at grid points is evaluated. Sweeping the grid
from left to right, on the first row intensity is not zero at points at the right of
A, with the maximum in A. On the second, from B’ on, with the maximum in
B’. On the following rows the first point whose intensity is not null is shifted of
one position to the right respect the one on previous row. The maximum is no
longer on the first point of the row for the reasons explained in the text.

(a) Linear interp. (b) Sec. Ord. strict mon. interp.

Figure 6.5: Intensity profile at rows 1, 10 and 20 of a 100×100 grid in the
case of a delta function boundary condition (row 0) and a ray that propagates
with an angle of 30◦respect to the horizontal direction.(a) Linear Interpolation.
(b)Second Order with strict monotonicity interpolation. In both cases, the
intensity is not a delta function, but a broad asymmetric curve whose peak is
attenuated respect to the initial one. All these effects increase with the height
(the row number) and are more evident with a linear interpolation scheme.
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Figure 6.6: Gray circles: points of the grid on which intensity is not zero. Black
circle: point at which boundary conditions are imposed. Radiation propagates
at an angle of 70◦ respect horizontal direction. On the first row intensity is not
zero only at points A0 and A. On second row not null intensity points are A0’,
A’,B’, and so on.

(a) Linear interp. (b) Sec. Ord. strict mon. interp.

Figure 6.7: Intensity profile at rows 1, 10 and 20 of a 100×100 grid in the case of
a delta function boundary condition (row 0) and a ray propagates at an angle of
70◦respect to the horizontal direction. (a)Linear Interpolation. (b)Second Order
with strict monotonicity interpolation. As in fig.6.5 the beam is asymmetric,
broadened and attenuated, but these aberration are less important.
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Figure 6.8: Intensity profiles at the top of the grid for a ray that propagates
at an angle of 70◦ respect to the horizontal direction for the three interpola-
tion schemes in the case of a Gaussian function boundary condition. Vertical
line indicates the expected position for the maximum. The three curves are
asymmetric and the maximum is shifted of some pixels respect to the expected
position. Strict and non strict second order schemes coincide at one side of
the curve, where a second order is always possible. On the left side the strict
scheme is broader since at some points it employs a first order scheme.

interpolation. For comparison linear interpolation case is shown.
Fig.6.8 also shows the attenuation of the peak and its shift, the continuous

vertical line being the expected position of the beam for that angle. We also
observe that the power of the beam, i.e. the integral of the intensity profile, is
conserved if linear interpolation is used but it is not for second order schemes.
This is due to the fact that a second order interpolation is not possible every-
where on the grid, as explained above. In general, a power loss of about some
few to some tens per cents is observed, the largest values being observed for
discontinuous boundary functions. This effect is dependent on the direction of
propagation (decreases for vertical directions) in the case of Gaussian functions,
while for discontinuous functions is not.

For what concerns the shift, simulations have shown it is more evident for
second order schemes.

In general all these effects are reduced when resolution is increased, as shown
for instance in fig.6.9. The ray power loss is instead larger for finer grids in the
case of discontinuous functions, while a decrease with the increase of grid res-
olution is observed for Gaussian functions. The same is observed for the peak
intensity attenuation: is very large (around 80-90%), almost independent on
propagation direction and increases with increasing the resolution, for discon-
tinuous functions; is some tens per cent, with a strong dependency on propaga-
tion direction (decreases as the angle increases), grid resolution (decreases with
the increase of resolution) and integration scheme (is lower for second order
schemes), for Gaussian function.

I finally noticed that, while in general spurious effects become more impor-
tant as the intensity propagation direction becomes shallower, there must be
a direction other than the vertical one, for instance 45◦ for regular grids, for
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Figure 6.9: Relative variation of the amplitude of the intensity profile (fit with
a Gaussian function) at the top of the grid for a Gaussian boundary condition
vs number of grid points along the vertical direction. Since the physical space
is kept constant, an increase of grid point number corresponds to an increase
of resolution. The finer the grid the smaller is the deviation from the original
value.

which the upwind points always belong to the grid, so that interpolation is not
needed. Therefore for these directions no spurious effects are observed. When
analyzing these effects in function of the propagation direction, one thus finds
that they are null for 90◦ (vertical) direction, then increase as the angle in-
crease, go to zero again at 45◦, and then increases again for the most shallow
directions. Effects are not symmetric respect to the 45◦ direction, the intensity
being evaluated in different ways in the two octants, as explained before.

6.2.1 Conclusions

Spurious effects introduced by interpolation have been investigated. Particu-
larly, I studied the dependence of these effects on propagation direction, resolu-
tion and boundary conditions, for three different interpolation schemes. Results
are summarized in the following:

• Broadening Increases for shallower directions and decreases with increas-
ing the resolution. For the cases analyzed, it is usually of some percent
(e.g. fig.6.9). It is more important for first order schemes.

• Asymmetries Increases for shallower directions and decreases with in-
creasing the resolution. It is more important for second order schemes.

• Peak attenuation Is usually very large (tens per cents) for the cases
analyzed, with the largest variations being measured for delta function
boundary condition. The effect is more important for shallow angles, and
decreases with resolution for Gaussian function. It is larger for first order
schemes.

• Peak shift Is larger for second order schemes and is usually of few pixels.
Increases for shallow angles.
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• Power loss It is observed for second order interpolation schemes. Power
losses are slightly dependent on propagation direction and increase with
increasing resolution in the case of discontinuous functions. A strong
dependence on propagation angle and resolution is instead observed for
Gaussian function.

Rays that propagate at shallower angles are thus more affected by spurious
effects. The linear interpolation also leads to larger spurious effects respect to
second order schemes. Nevertheless, second order schemes do not conserve the
beam energy (while first schemes do) so leading to non physical results. Since
most of the effects can be reduced increasing the resolution, I thus conclude
that a first order scheme is preferable.

I finally want to stress the fact that the cases analyzed, non uniform or dis-
continuous boundary conditions, are extreme cases and that in the simulations
I’ll present in next chapters the expected spurious effects generated by interpo-
lation are less important, as shown by the fact that all the effects analyzed are
usually less evident for the Gaussian function boundary condition.

6.3 Combined effects of integration and inter-

polation

When estimating intensity by the Short Characteristic, results depend both on
integration and interpolation schemes adopted. In order to investigate this issue,
I have studied the relative error (relative difference of the intensity estimated
at the top of the grid respect to the expected theoretical value) in the case
in which the source function is null. Again the scaling of the error with grid
resolution, for the different schemes and at several beam propagation direction
was investigated. For instance, fig.6.10 shows, for different angles, the relative
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Figure 6.10: Intensity relative error at the top of the grid in the case of a beam
that propagates at three different angles on a regular grid. Results obtained for
the Second Order and Higher Order integration schemes (see text) and for first
and second order interpolation schemes are shown. At vertical directions (cases
a and b) the integration scheme determines the result, while for shallow angles
(case c) results are determined by the interpolation scheme.

error of intensity evaluated on a regular grid when opacity and density vary as
exponential functions. For this test only results for SO and HO techniques are
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presented, when a second order or a first order interpolation schemes are used.
Note that in this case the atmosphere varies with continuity, so that strict
and non strict second order schemes produce identical results. Even in this
case higher order integration techniques lead to better results. A comparison
between plots in fig.6.10 (left and center) shows that no significant variations
occur if the impinging angle is decreased from 90◦ to 60◦. An increase of two or
three orders of magnitude in the error for second order interpolation, and about
three or four orders for first order interpolation, is observed for radiation that
propagates at 30◦ (right). A comparison of the plots also reveals that for angles
greater than 45◦ the main source of error is the truncation in the series expansion
in the integration scheme, while for shallow angles the uncertainties introduced
by interpolation are overwhelming. This is due to the fact that for vertical
directions the upwind point is on a row of the grid, so that, if the atmosphere
(k,ρ, Source function) varies only with height and the boundary conditions are
continuous functions (as in the cases here discussed), the interpolation scheme is
not important. For shallow angles, instead, the upwind points are on columns of
the grid, and the interpolation scheme is crucial to the evaluation of intensity. It
is worth to notice that the error for SO technique is positive (the measure is an
underestimate), while it is negative or oscillates around zero for HO technique.

6.4 Eddington Barbier Atmosphere

In order to analyze the combined effects of integration and interpolation, results
have been analyze in the case of an Eddington Barbier atmosphere (see 5.1.6),
that means in the case in which the source function is:

S = a0 + a1µτ (6.2)

note that this relation differs from the one in 5.1.6 since here τ is the optical
depth and not the radial optical depth (see 5.1). For a finite slab, the solution
of RTE is, from eq.5.17

Ifin = Iine−∆τ +

∫ τfin

τin

(a0 + a1µτ)e−(t−τfin)dt

= Iine−∆τ + a0(1 − e−∆τ) +

+ a1µ · e−∆τ (−τin − 1) + a1µ(τfin + 1) (6.3)

where Iin is the boundary condition (e.g. the intensity at the bottom of the
grid) and Ifin is the intensity value at a certain height in the atmosphere (e.g.
at the top of the grid). For a slab of depth Z, the optical depth is given by

τ =

∫ D

0

α(s)ds = −
∫ 0

Z

α(z)
dz

µ
(6.4)

where s indicates the physical distance travelled by the ray, α is the product
of density and opacity and z is the distance along the vertical direction. As
already shown in previous chapter, ds = − dz

µ . The minus sign derives from the
fact that in the chosen notation z decreases when s increases. For the test the
α function was chosen so that

α(z) = ez−Z (6.5)
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Z being an arbitrary constant. Therefore, for a generic height z,

τ(z) = − 1

µ
(e−z − e(z−Z)) (6.6)

The boundary condition Iin is evaluated by

Iin =

∫ ∞

τin

(a0 + a1µt)e−(t−τ)dt = a0 + a1µ + a1µτ (6.7)

Simulations have been performed at five different angles respected to the hori-
zontal direction: 90◦, 70◦, 50◦, 30◦, 20◦. Regular and irregular grids of different
resolutions have been used, and again results obtained by strict second order
and first order interpolation schemes have been compared. In general relative
error decreases of about two orders of magnitude when resolution is increased of
one order. No significant difference in results is evident for vertical directions,
while the shallower (30◦, 20◦) give results worse of about one order of magni-
tude. Fig.6.11 shows the scaling of the relative error, computed respect the real
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(a) Linear interp. (b) Sec.Ord.interp.

Figure 6.11: Intensity relative error in the case of an Eddington Barbier atmo-
sphere vs optical depth. The integration scheme is the Second Order one, but
the interpolation scheme is a) first order and b) second order. Radiation propa-
gates from the bottom (highest optical depth) to the top (lowest optical depth)
along different directions. At vertical directions (angles 90, 70 and 50) error
is almost independent from interpolation scheme and increases toward the top.
At horizontal directions Linear interpolation scheme gives higher errors. Note
that the error decreases at horizontal directions for a second order interpolation
scheme.

value given by eq.6.3, with the radial optical depth, for different angles and for
the two interpolation schemes. In both cases, for directions that form with z
axis angles less than 45◦, (in this case 90◦, 70◦ and 50◦), the error increases
when approaching the surface due to the error accumulation, while the amount
of error does not vary significantly with angle. Shallower angles present higher
error because more interpolations are needed for the evaluation of intensity at
the first useful point of the grid (see par.5.3.1 and fig.5.6). When a second order
is used, the effect is enhanced by the fact that, for the reasons explained in 6.2,
at the first row the intensity is evaluated with a first order scheme. In this case,
fig.6.11 (b) shows also that relative error presents a maximum at high τ , corre-
sponding to the first (from the bottom) 2 or 3 rows of the grid. This is caused
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Intensity N = 6 N = 8 N = 12
µ2 10−8 10−8 10−8

µ4 10−8 10−8 10−8

µ6 10−8 10−8 10−8

µ8 10−8 10−8 10−8

µ10 10−8 10−8 10−8

µ12 −4.8 · 10−3 10−8 10−8

µ14 −2 · 10−2 10−8 10−8

µ16 −4 · 10−2 4 · 10−4 10−8

Table 6.1: Mean intensity integral J relative error evaluated with the Gauss-
Legendre scheme in the case of an intensity field that is a power function of µ
for different orders of quadrature.

by the fact that at the first rows, the effect of linear interpolation is dominant
respect to the gain that is obtained by a second order interpolation. When a
pure first order is used (fig.6.11,(a)), error always increases as the surface is
approached, but the error is about one order of magnitude larger than second
order.

6.5 Quadrature techniques

In order to test the quadrature techniques presented in previous chapter and
to evaluate their performance and limits, I have analyzed the numerical results
obtained with functions whose integral is analytically solvable: the intensity is
a power function of µ and a Lambert radiator.

Table 6.1 and table 6.2 report relative errors obtained evaluating mean in-
tensity J in the case Intensity is a power function of µ and does not depend on
φ. That is

J =
1

2

1
∫

0

µldµ +
1

2

0
∫

−1

µldµ

where l is an even integer. Several values of l for three different order of quadra-
ture and for the Gauss-Legendre and Carlson schemes respectively have been
investigated.

Table 6.1 shows that Gauss-Legendre scheme gives results that are exact
within the error round off machine, for polynomials of order lower than twice
the order of the quadrature, as expected from the theory (e.g. Press et al., 1994).
For the Carlson scheme I notice that, for lower order power functions, results
get better increasing the order of quadrature, while no significant improvement
is obtained when the exponent is higher. As shown in fig.6.12, this is due to the
distribution of quadrature points in the integration interval. Higher power func-
tions are sensibly different from zero only at higher values of µ, an interval that
is poorly sampled even by the highest order schemes investigated. This shows
that, because different orders of quadrature use different quadrature points, in-
creasing the order of quadrature does not always guarantee the increasing of
accuracy of results. In atmospheres with flux tubes, whose investigation is the
purpose of this thesis, the integrand functions can change abruptly in the in-



www.manaraa.com

Radiative properties of complex magnetic elements 100

Intensity N = 6 N = 8 N = 12
µ2 10−8 -0.002 10−8

µ4 0.0266 0.0144 0.0072
µ6 0.05 0.03 0.01
µ8 0.06 0.035 0.02
µ10 0.06 0.04 0.02
µ12 0.05 0.04 0.025
µ14 0.03 0.04 0.03
µ16 0.034 0.04 0.03

Table 6.2: Mean intensity integral J relative error evaluated with the Carlson
scheme in the case of an intensity field that is a power function of µ for different
orders of quadrature.

Figure 6.12: Distribution of µ-level points for 0 ≤ µ ≤ 1 in the Carlson scheme.
Different symbols indicate the quadrature points positions in the interval for
the different orders. The lines show the values of different order polynomials
in the interval. High order polynomials are sensibly different from zero only
for µ approaching 1. When increasing the quadrature order only some of the
points are closer to 1 and since generally the lower order points don’t coincide
with higher order points, an increase of quadrature order not always implies an
increase in accuracy.
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terval because of the presence of inhomogeneities introduced by the magnetic
field. Results shown in table 6.2 show that in these cases a technique that al-
lows a high number of quadrature points is necessary. In particular 6 levels in
an octant (corresponding to N=12) is not sufficient to sample the functions.
One would also prefer a technique in which the set of points of a certain order
includes the sets of points of lower orders, rather than one, like the Carlson or
the Gauss Legendre one, in which the set of points are disjoint. This would
allow estimating the best order of quadrature for a problem by studying result
variations with increasing the order of quadrature.

Tests with both schemes have been repeated by using a more realistic at-
mosphere. A Lambert radiator (see 5.1.6), that means an atmospheric model
in which the source function is constant with depth and µ (S = a0), was used.
Fig.6.13 and 6.14 show the relative error in the computation of J and flux by
the two schemes for different orders. In order to discern interpolation uncer-
tainties from quadrature errors, plots show with continuous lines mean intensity
and flux relative errors obtained in the case in which intensity is evaluated by
an analytical formula. Dashed lines represent errors obtained when numerical
intensity values estimated by the short characteristic code developed are used.
Both figures show that error is slightly dependent on the intensity field employed
(analytical or numerical) and that it is still quite high even at the highest orders
for both schemes. This is due to the fact that, while outgoing intensity radiation
has the simple expression

Iout = a0 (6.8)

incoming radiation is the following function of angle and optical depth:

Iinc = a0(1 − e
−τ
|µ| ) (6.9)

The mean intensity is thus evaluated by solving the integral:

J =
1

2

∫ 1

0

a0dµ +

∫ 0

−1

a0(1 − e
−τ
|µ| )dµ (6.10)

The integral on the left has a trivial solution. By contrast the integral on the
right is an exponential integral of order 2. By a change of variable x = − 1

µ , we
have in fact:

∫ 0

−1

e
−τ
|µ| dµ =

∫ ∞

1

e−τ |x|/x2dx (6.11)

Similarly it can be shown that the evaluation of flux requires the evaluation of
an exponential integral of order 3. Figure 6.15 shows the errors obtained esti-
mating the 1D integral 6.11 with the Gauss-Legendre scheme at different orders
and for different values of optical depth. As the ’true’ values, the results ob-
tained by the ’expint’ routine of IDL were assumed. Curves present a maximum
and a minimum whose absolute value and position diminish with increasing the
order of integration. Nevertheless, only at orders greater than 30 the relative
error is less than 1%.

The fact that continuous (intensity evaluated analytically) and dashed (in-
tensity evaluated by short characteristic code) lines almost coincide in fig.6.13
and fig.6.14, and a comparison of fig.6.13 with fig.6.15, show that the main
source of error in the evaluation of mean intensity and flux for a Lambert ra-
diator atmospheric model is the quadrature scheme and order employed. Note
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Figure 6.13: Relative error in the evaluation of mean intensity J vs optical
depth in the case of a Lambert radiator. Continuous line: results obtained with
analytical intensity values. Dashed lines: results obtained with intensity values
evaluated by the Short Characteristic code developed. The Carlson and Gauss
Legendre scheme give similar results when the same order of quadrature (8 in
this case) is employed, but the error is still quite high (about 4%) at some depth.
The error is reduced when increasing the quadrature order.

Figure 6.14: Relative error in the evaluation of flux intensity F vs optical depth
in the case of a Lambert radiator. Continuous line: results obtained with an-
alytical intensity values. Dashed lines: results obtained with intensity values
evaluated by the Short Characteristic code developed. The Gauss Legendre
schemes give better results respect to the Carlson scheme even for the same or-
der (N=8). The error is reduced of about one order of magnitude when doubling
the quadrature order of the Gauss Legendre scheme (N=8 and N=16).
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Figure 6.15: Relative error in the evaluation of Exponential integral of order 2
using the Gauss Legendre scheme and different orders of quadrature. Only at
orders higher than 30 the values of the function at stationary points are less
than 1%.

also that the nature of the error in the evaluation of exponential integrals and
power functions of µ is the same, namely the poor sampling of the functions.

6.5.1 Conclusions

In this chapter I have presented the results obtained by some preliminary tests,
whose aim was to identify and quantify numerical problems inherent the evalu-
ation of intensity radiation field by the short characteristic code developed, and
the estimation of mean intensity and radiative flux through the two quadrature
schemes employed. Radiative intensity field can be evaluated with large accu-
racy in the case of continuous vertically stratified atmospheres, as shown for
instance in fig.6.10, especially for vertical direction. Depending on integration
and interpolation scheme, the error scales as a power function of the resolu-
tion, so that one can adjust the space sampling in order to obtain the desired
accuracy. I also observed that results at shallow directions are dominated by in-
terpolation scheme adopted and that errors at vertical directions are determined
by the integration scheme. Shallow directions, because of the larger number of
interpolation needed, and because they experience a larger total path length,
are affected by larger errors. When the atmosphere is not homogeneous, sev-
eral spurious effects can determine the final horizontal intensity profile. These
spurious effects are larger for discontinuous boundary conditions, due to inter-
polation. Even in this case effects can be reduced increasing the grid resolution.
I also observed that second order schemes do not conserve the energy beam all
over the domain, so that a first order scheme should be preferred.

Testes concerning the 3-D quadrature scheme have revealed that in order to
have a reasonable accuracy high order schemes have to be employed. On the
tests carried out, the Gauss-Legendre scheme gave the best results. Note that
in the case of Lambert Radiator, the most realistic one among the ones investi-
gated, the error estimated in the evaluation of J is larger then the uncertainties
observed for the total radiative flux. In the models I developed (see chapter 7)
the radiative equilibrium is imposed by an iterative scheme in which the tem-
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perature is updated at each step by the evaluation J, so that an accuracy better
then the one observed for instance in fig.6.13 is preferable. This means that an
order higher than 12 has to be employed and thus the Gauss Legendre has to
be preferred to the Carlson scheme.
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Chapter 7

A Flux Tube Model

In this chapter I describe the model I developed to investigate some physical
properties of stellar atmospheres and magnetic flux tubes. I firstly describe
the geometry of the model and then describe the equations and the numerical
techniques employed to solve them. In particular I developed two classes of
models. The first one takes into account both convective and radiative processes.
In the second one radiation is the only energy transport mechanism but radiative
equilibrium is imposed. Differential equations have been normalized in order
to explore different scenarios and discern the different physical quantities that
determine the final result. Some examples of different atmospheres, obtained
changing the free parameters in the models, are given.

7.1 NON magneto NON dynamic Flux Tube Mod-

els

In chapter 4 I illustrated the concept of Magnetic flux tube and physical equa-
tions to which it obeys, that is the MHD equations. I also illustrated the case of
static tubes, that is the MHS equations and some simple models presented in the
literature. This chapter describes the model I developed in order to investigate
some observed properties of magnetic ’bright’ regions.

The general sketch that describes the geometry of the problems I have solved
is shown in fig. 7.1. The atmosphere is plane parallel and is built by the infinite
repetition of plane x − z along direction y. It is not uniform along x direction
(because of the presence of the flux tube) and along z direction (because of the
vertical gravitational stratification). It is infinite and uniform along y direction.
The space coordinate z is positive and increases with depth.

The presence of the flux tube (shaded area) is simulated imposing lower
pressure and lower density in a small region of the domain. Pressure, tempera-
ture an density are specified at the bottom. Boundary conditions for intensity
are also necessary. At the top the incoming intensity is set to zero, while at
the bottom radiative diffusion is assumed. Similarly, the optical depth at the
bottom is evaluated assuming radiative diffusion and at the top is set to zero.

Given boundary conditions, temperature, density and pressure inside and
outside the tube are evaluated using a set of differential equations that stem
from simplifications of MHD equations. In particular, let us assume that the

105
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Figure 7.1: Sketch of the geometry of the model. Plane parallel atmosphere,
not uniform along x and z directions, and uniform and infinite along y direc-
tions. Periodic horizontal conditions are imposed. The presence of the flux
tube (shaded area) is simulated imposing lower density and pressure. Boundary
conditions are imposed at the bottom (see text). The outgoing intensity for
different line of sights (purple arrows) escaping from τ = 1 surface (blue curve)
is evaluated.

tube is static, so that derivatives respect to time and the velocities are set to
zero. Let us also assume that the magnetic field is constant respect to height
inside the tube and its value is given by pressure horizontal balance at the
bottom of the tube (eq.4.15). Than the following new set of equations has to
be satisfied by the static state:

Energy

∂qk

∂xk
= 0 (7.1)

Momentum

− ∂p

∂xk
+ ρg = 0 (7.2)

Continuity

∂ρ

∂t
= 0 (7.3)

where
q̄ = FRadiative + FConvective

Pressure and temperature are related by the perfect gas law and e is the internal
energy:

e = CV T.
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More specifically, previous equations can be rewritten as:

∇ · (F̄Radiative + F̄Convective) = 0 (7.4)

dP

dz
= ρg (7.5)

P =
KB

me
ρT (7.6)

Note that in writing these equations we have omitted the requirement of
horizontal pressure balance, therefore the shape of the tube does not change
with the height and its flanks remain vertical. This is an oversimplification but
it approximates the geometric configuration of magnetic structures in the lowest
photospheric levels.

Once an inhomogeneous atmospheric model is obtained, intensity along τ =
1 surface, represented by the blue curve in fig.7.1, and for different view angles
(red arrows) is investigated. The intensity field at each angle is evaluated by
the short characteristic code developed and described previously.

Several models can be constructed from previous equations. In particular,
in this work I have investigated two classes of models. In the first one the two
atmospheres are totally independent and therefore in the energy equation 7.4
only variations along vertical directions are different from zero, so that:

dFRadiative

dz
+

dFConvective

dz
= 0. (7.7)

The convective flux is estimated using the Mixing Length theory (see Appendix
to this chapter). In the following I will address models obtained with these
schemes as NON Radiative Equilibrium models.

In the second class of models convection is absent and the radiative equi-
librium is imposed allowing the radiation to propagate through the medium, so
that the energy equation is eq.7.4 with convective flux set to zero. The Radia-
tive flux is estimated by the radiative transfer code and quadrature techniques
I developed and that are described in chapter 5. In particular, this quantity is
evaluated according to the 3D geometry illustrated in fig.7.1, while the other
equations are solved only in plane x − z. This is therefore a 2.5-D problem. In
the following these are addressed as Radiative Equilibrium models.

The study I present is parametric and no realistic value for each of the quan-
tities is assumed. This allows to investigate several possibilities and to discern
the most important physical processes that regulate some observed properties.

In the next paragraphs I describe in more detail the atmospheric models
developed to reproduce the physical properties of the quiet and magnetized
sun.

7.2 Tubes in NON radiative equilibrium

7.2.1 Radiative Diffusion atmospheres with convection

The case in which both convection and radiation contribute in energy transport
have been investigated. In particular, the case transport by a non radiating
parcel in the mixing length approximation, described in paragraph C.1.2 of the
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Appendix to this chapter, has been considered. The flux conservation (or energy
equation), requires that:

KR∇ + KC(∇−∇a)3/2 = FSun (7.8)

where ∇ = lnT/ lnP , KR = 16σT 4

3kρHP
and KC = α

2 ρcpT l
√

gδ
8HP

. ∇a = 2/5 is

the adiabatic gradient and HP is the pressure scale height. The solution of the
cubic equation 7.8 gives an estimate of gradient ∇. Nevertheless, convection
takes place only in some particular physical conditions, that is only when the
Schwarzschild criterion is satisfied. This requires ∇ > ∇a. If this condition is
not satisfied, then radiation is the sole energy transport mechanism, and the
flux conservation law requires that

KR∇ = FSun (7.9)

The gradient ∇ is thus evaluated through equations 7.8 or 7.9, depending
on whether or not the Schwarzschild criterion is satisfied. Temperature T (z)
and pressure P (z) are then evaluated solving the set of differential equations:

dT

dz
=

T

HP
∇ (7.10)

dP

dz
=

gme

KB

P

T
(7.11)

where eq.7.11 is derived combining eq.7.5 with relation 7.6. Given the bound-
ary conditions for temperature and pressure, and given an initial condition for
the temperature and pressure profiles T (z) and P (z), a solution is found iter-
atively. The Rosseland mean opacity k = k0ρ

mT n, with k0, n and m as free
parameters, is adopted. The mixing length parameter α is left as free.

Different solutions have been obtained changing the values of parameters
k0, n and m and α. Figure 7.2 shows for instance results obtained with α, n and
m constant, but for different values of k0. For the lowest values (k0 = 10 and
k0 = 15) only the deeper part of the domain is super adiabatic, while for the
highest value (k0 = 30) convection is effective in the whole domain. The amount
of relative flux carried by radiation or convection is also a function of depth and
k0, that means that are functions of opacity. Note that ∇ is usually slightly super
adiabatic in the regions where convection is efficient, while changes abruptly in
the regions where convection is not efficient. The last panel shows finally the
relative difference between the temperature profile estimated solving the set of
equations 7.10 and 7.11, and the temperature profile expected for an adiabatic
gas. Differences are very small in regions were convection is efficient, but increase
rapidly in regions where radiation is the only energy transport mechanism. Note
also that the higher is the opacity (k0) the more these differences increase. From
eq. 7.8, in fact, if k0 increases KR decreases and ∇ increases in order to conserve
the total flux.

Finally, variations of parameter α regulate the efficiency of convection. The
presence of magnetic field, that inhibits convective motion in flux tubes, has thus
been mimicked assuming lower values of mixing length parameter in magnetic
regions and higher values in non magnetic regions. Results concerning this point
are shown in next chapter.
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Figure 7.2: Atmospheric models in presence of convection for different values
of parameter k0 and for m = −0.5, n = 3.5 and α = 1.5. First raw: Radiative
(continuous line) and Convective (dashed line) relative flux. Second raw: dif-
ference between the evaluated gradient and the adiabatic gradient. Third raw:
relative differences between the computed temperature profile and the adiabatic
temperature profile. As k0 increases the opacity increases and the regions of the
domain in which convection becomes efficient increase. Third raw shows that
in regions where convection is efficient, the gas is approximately adiabatic.
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7.3 Atmospheres in radiative equilibrium

The case of atmospheres in radiative equilibrium has also been considered. This
is achieved via an iterative scheme illustrated in fig.7.3. An initial condition
atmosphere is assumed (usually a radiative diffusion atmosphere described in
7.3.1) and the total flux and mean intensity J are then evaluated by the short
characteristic code. The new temperature at each point of the domain is evalu-
ated imposing LTE and Radiative Equilibrium, that is S = J = σT 4. The new
pressure is evaluated solving the differential equation 7.11 and from this the new
density (through perfect gas law) and new opacity. In this updated atmosphere
the flux and mean intensity J are reevaluated. The iterations are stopped when
the total relative difference between the temperature fields of two consecutive
iterations is smaller than a certain threshold. In particular the results I will
show have been obtained with the threshold value equal to 5 × 10−4. In the
models analyzed, this criterion is satisfied within 10-15 iterations, as illustrated
in fig.7.4 (left) for the model A.A1/3 described in next chapter. Note that,
as illustrated by the plot on the right of fig.7.4, the flux converges more slowly
than the temperature, so that the flux has not converged yet when temperature,
and other physical quantities like pressure and opacity, have. Tests have shown
that in order the flux to satisfy the same convergence criterion imposed for the
temperature the number of iterations required is from five to ten times larger.
For this reason in the models I will show in next chapter flux is not constant
respect to height. This is not expected to influence the intensity profiles, the
physical quantity I want to investigate, since these are mainly dependent on
temperature and opacity (as I will show in detail in next chapter).

For boundary conditions the diffusion approximation is assumed, so that
only the temperature at the bottom has to be specified (see also below).

7.3.1 Initial and boundary condition: Radiative Diffusion

atmospheres without convection

As initial condition, the radiative diffusion approximation is assumed in most
of the models I developed. The Radiative Diffusion approximation and physical
conditions under which it is a valid assumption were explained in chapter 5. It
is certainly valid in the deeper layers of the atmosphere, at optical depths larger
than one. This is thus also a good boundary approximation for the Intensity
at the bottom of the domain, provided that the boundary values of the other
parameters (temperature and density) are such that the opacity is high and
optical depth is large. Let us consider the case in which radiation is the only
energy transport mechanism. From eq. 5.59, the temperature and the optical
depth are related by the formula:

T (τ) = Teff (
3

4
τ +

1

2
)

1
4 (7.12)

where Teff is a function of the total flux FSun.
Therefore, from LTE condition, S = σT 4 = σT 4

eff (3
4τ + 1

2 ). From eq.5.48

Iout.(τ, µ) = σT 4
eff (

3

4
τ +

1

2
+

3

4
µ) (7.13)
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Figure 7.3: Flow chart of the code employed to impose Radiative Equilibrium.
The system is initialized with an atmosphere in radiative diffusion approxima-
tion and a boundary temperature is imposed at the bottom. The radiative
transfer code evaluates the intensity at each point of the domain and for each
direction µ of the quadrature scheme adopted to evaluate the mean intensity
J and radiative flux F. The value of J allows to evaluate the new T at each
point of the domain (RE condition) and the new S (LTE condition). From
pressure hydrostatic equilibrium condition the new pressure is evaluated and
then the new density and opacity. In this new atmosphere the new values of I,
J and F are evaluated. The scheme is iterated until the differences between the
temperature values of two consecutive iterations are less than a threshold ǫ.

Figure 7.4: Relative difference, in logarithmic scale, between the temperature
fields (left) and the total flux (right) of two consecutive iterations n versus the
iteration number. These results refer to the model A.A1/3 described in next
chapter.
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Figure 7.5: Temperature, Pressure, Density and Opacity vertical profiles in the
case of pure radiative, radiative diffusion approximation. Different profiles are
obtained changing the values of parameters n, m, k0 and temperature boundary
condition. In particular, profiles obtained with three different values of param-
eter n are shown. These solutions have been obtained by numerically solving
the set of differential equations 7.14, 7.5 and 7.6.

From the energy conservation (eq. 5.50):

FSun =
16σT 3

3kρ

dT

dz
(7.14)

where z increases toward the center of the Sun and k = k0ρ
mT n is the

Rosseland mean opacity. The quantities k0, n and m are free parameters. In
appendix C I show that a solution to equations 7.14, 7.5 and 7.6 is

T (z) =
m + 1

m − n + 4
gcz + Const. (7.15)

P (z) =

[

16σg

3k0FSun

(

KB

me

)m+2
m + 1

m − n + 4
T m−n+4

]
1

m+1

(7.16)

ρ(z) =

[

16σ

3k0FSun

m + 1

m − n + 4
T 3−n

]
1

m+1

(7.17)

with m 6= −1∧m−n+3 6= −1. The solutions in the cases in which parameters
n and m do not satisfy these conditions are given in appendix C. Since in a
reasonable atmospheric model temperature, pressure and density increase with
depth, also the conditions m+1

m−n+4 > 1∧ 3−n
m+1 ≥ 1 have to be satisfied. Moreover,

at photospheric level the opacity is strongly dependent on the temperature and
slightly dependent on the density so that the conditions n > m ≥ 0 also hold.
Different atmospheric models are constructed by choosing the opportune values
of the free parameters and of the boundary conditions. It is important to notice
that only the temperature value has to be specified at the bottom, the other
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physical quantities being evaluated through relations 7.12 (optical depth), 7.13
(intensity), 7.16 (pressure) and 7.17 (density). Figure 7.5 shows an example of
solutions obtained changing the value of parameter n. Note that solutions to
this problem are evaluated solving the set of differential equations 7.14, 7.5 and
7.6, and not from analytical solutions 7.15, 7.16 and 7.17. Numerical tests have
shown, however, that numerical solutions are in good agreement with analytical
ones.

In brief, in most of the models the initial conditions are given by relations
7.15, 7.16 and 7.17. The boundary conditions at the bottom for temperature,
pressure and density also satisfy previous relations, while relations 7.13 and 7.12
are used for intensity and optical depth.

7.4 Computational and Numerical Details

The differential equations necessary to describe the atmosphere in the flux tube
and its surrounding, described in previous paragraphs, have been solved nu-
merically. At this aim a numerical technique, based on the Relaxation method
(Press et al., 1994), has been developed and implemented.

The routines developed for the simulations and for the analyses of the results
have been written in the IDL language. The results shown in the next chapter
have been obtained sampling the space with a 140×280 points regular grid for
models in RE and a 200×400 points regular grid for models with convection. For
RE models a smaller grid was chosen in order to optimize the computational
time. Most of the simulations have been in fact run on a 3 MHz Sun Work
Station. On such a machine the time employed to evaluate the radiative flux
with a N=12 per octant quadrature scheme is about 3 hours. The time necessary
to satisfy the convergence criterion described in previous paragraph is thus about
2 days. Note that this is also the reason why the quadrature scheme has order
12, in spite of the fact that in chapter 6 I showed that a higher order scheme
would be preferable.

The differential equations have been normalized in order, as explained above,
to allow a parametric study. Number of grid points and the range of integration
of the independent variable (2 ≤ z ≤ 3 and 2 ≤ z ≤ 5 for RE and convec-
tive models respectively) were chosen in order to prevent numerical instabilities
(when integrating close to zero, for instance, convergence is never achieved,
while poor resolution leads to non-physical results due to a poor sampling of
the transition between super and subadiabaticity).
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Chapter 8

Results

In this chapter I show the results obtained by the models described in chapter
7. I firstly show the physical properties of models with convection and models
in radiative equilibrium. Then I show results obtained by the investigation
of contrast at different values of optical depths and at different disk positions.
Finally I compare results obtained with simulations with the ones obtained with
PSPT images and shown in chapter 3.

8.1 Physical properties of simulated magnetic

flux tubes

8.1.1 Models with Convection: Models C

In order to study the effect of the presence of the magnetic field in atmospheres
with convection I have investigated two classes of models.

In the first one the presence of the magnetic field is mimicked by reducing the
value of the mixing length parameter α, that is equivalent to reduce the distance
travelled by a rising convective parcel (see Appendix C). This is in agreement
with the fact that, as seen in both observations (Title et al., 1992) and numerical
3-D MHD simulations (Vogler et al., 2005), solar granules appear smaller and
less brilliant and are characterized by slower temporal evolution in regions of
high concentrations of magnetic field (plages). The reduction of the mixing
length causes an increase of the gradient ∇ and therefore a sharper decrease of
temperature. In order to investigate the sole effect of α parameter variation, the
pressure reduction consequent to the magnetic pressure and horizontal pressure
balance are not taken into account.

Different values of α inside and outside the tube have been investigated.
Figure 8.1 shows for instance temperature, pressure, density and opacity profiles
obtained with α = 5 in the quiet atmosphere and α = 1 in the magnetic flux
tube. The Rosseland mean opacity is K = ρT 3 (that is k0=1, m=1 and n=3).
The boundary conditions at the bottom of the domain are the same inside and
outside the tube and their values are assumed to be the ones expected from an

114
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Model C5.1

Figure 8.1: Model with convection efficiency reduced inside the tube. Contin-
uous line: α = 5 (quiet atmosphere). Dashed line: α = 1 (flux tube). The
depth z increases toward the interior of the atmosphere. The only quantity to
be sensibly affected by variations of α is the temperature. The asterisks indicate
the height and temperature at the upper boundary of the convective layer.

adiabatic stratification:

Tbottom = ∇ag
me

KB
zbottom + Const. (8.1)

Pbottom = z
1/∇a

bottom (8.2)

where zbottom is the spatial coordinate at the bottom of the grid and Const. is
an arbitrary constant (in this case its value is -0.3).

Figure 8.1 shows that in general temperature, pressure, density and therefore
opacity are slightly sensitive to changes of value of α. The temperature is the
quantity that is most effected by the variation. Reduction of mixing length
parameter causes indeed reduction of the coefficient KC in equation 7.8. The
gradient ∇ then has to increase in order the total flux to be conserved, and
thus the temperature decreases. The gradient of P is inversely proportional to
the value of T (eq.7.11) so that a decrease of T corresponds to a decreases of
the value of P. As shown in fig.8.1 the relative variation of P is smaller respect
to the relative variation of T. From the perfect gas law the density then has
to increase. The asterisks on the plot that shows temperature indicate height
and the corresponding temperature values at which the gradient becomes from
subadiabatic to super adiabatic, that is the upper boundary of convective layer.
The position of this boundary is only weekly sensitive to changes in α, being this
essentially dependent on the opacity value. This model, in which the parameter
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Model C5.1P1/2

Figure 8.2: Model with convection efficiency and pressure boundary value re-
duced inside the tube. Continuous line: α = 5 (quiet atmosphere). Dashed line:
α = 1 and pressure boundary value reduced to half (flux tube). The reduction
of pressure causes the vertical profiles of all the physical quantities shown to
change. In particular reduction of pressure shifts the upper boundary of the
convective layer (marked by the asterisks) to the interior.

α is larger in the quiet atmosphere and lower in the magnetic flux tube, is mostly
representative of a pore or a sunspot, since the temperature inside the tube is
lower than outside. In the following I will refer to this model as model C5.1.

The second class of models I investigated is constructed similarly to the first
one, that is the mixing length parameter value is smaller inside the tube, but
the lower boundary value for the pressure inside the tube is a fraction of the
pressure outside the tube. This mimics the gas pressure reduction expected by
the horizontal pressure balance. Figure 8.2 shows in particular results obtained
imposing the internal boundary pressure value to be half of the external bound-
ary pressure value. In this case pressure, density and opacity stratification are
markedly different in the tube. The temperature, instead, is very similar to the
one shown in fig.8.1 in the deeper layers, whereas it is higher in the highest
layers of the domain. Variations of temperature are essentially consequences of
variations of ∇. At the bottom of the domain the reduction of pressure causes
coefficient KR (that is proportional to P−2) to increase and coefficient KC (that
is proportional to P ) to decrease in eq. 7.8. Nevertheless the opacity is still
too high and the increase in KR does not compensate for the decrease in KC .
Because of the conservation of flux, then ∇ has to increase, and consequently
the temperature decreases. At the top the opacity is lower and the point at
which the gradient becomes subadiabatic is shifted deeper respect to the ’quiet’
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atmosphere. In the purely radiative regime, at the top of the domain, the opac-
ity is small and thus KR is high, so that a small value of ∇ is sufficient to
carry the flux. Consequently the temperature varies slowly with depth and the
atmosphere in the tube is hotter at the top respect to outside. This result is
very important since it indicates that heating in the tube can take place even
without radiative channelling from the flanks of the tube. It may be objected,
though, that this model was obtained without taking into account the radiative
exchanges between the tube and the surrounding atmosphere. I will make some
comments about this point at the end of paragraph 8.1.2. I will refer to this
model as model C5.1P1/2.

8.1.2 Radiative Equilibrium models

Two classes of models of flux tubes in radiative equilibrium have been investi-
gated. In the first class of models the boundary value of temperature inside the
tube is lower and the pressure and density values are evaluated by relation 7.16.
In the second one the temperature at the lower boundary inside and outside the
tube is the same and the presence of the magnetic field is mimicked reducing
the pressure, and consequently the density (evaluated by the perfect gas law),
inside the tube. In the following I will refer to the first kind of models as ’cold’
and I will denote them models B.A. These models mimic the situation in which
the suppression of convection causes a reduction of temperature inside the tube
and are representative of small pores or small tubes in downflow regions gener-
ated for instance by the ’collapse’ phenomenon described in 4.2.1. The second
classes of model will be addressed as ’hot’ and will refer to them as A.A. They
physically reproduce the conditions of small tubes in thermal equilibrium with
the surrounding atmosphere, as most likely is for small tubes that propagate to
the deepest layers of the solar atmosphere. Dependence of results on flux tube
size has been investigated.

’Cold’ tubes: models B.A

’Cold’ flux tube models have been initiated using equations 7.15, 7.16 and 7.17
for temperature, pressure and density initial and boundary conditions. The
bottom boundary temperature value inside the tube is equal to the temperature
value outside the tube minus an arbitrary constant. Since the temperature scales
linearly with height in radiative diffusion models, this is equivalent to use inside
the tube a ’collapsed’ atmosphere. In particular results shown in this paragraph
are obtained with the following boundary values: Tbottom = 1.327, T FT

bottom =
Tbottom − 0.1. The total flux is 0.05 and the parameters that define the opacity
are K0 = 20., n = 3 and m = 1. The intensity of incoming radiation at the top
of the domain is set to zero, as well as the optical depth value. At the bottom
the optical depth value is given by eq.7.12. In order to investigate the sole effect
of temperature reduction, the reduction of pressure consequent to the magnetic
pressure and horizontal pressure balance are not taken into account.

Figures 8.3-8.7 show results obtained with this model. Figure 8.3 shows in
gray scale the temperature intensity in the domain. Isothermal contours are
marked in white. The vertical yellow lines show the tube flanks and the blue
line shows the τ = 1 surface. The red lines mark the locations were, at each
height, the horizontal optical depth (τHoriz hereafter), evaluated from the axis
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Model B.A

z=3

z=2

z=2.5

Figure 8.3: Temperature field (gray scale) and temperature iso-
countours (white lines) of a flux tube in Radiative Equilibrium.
The yellow vertical lines represent the tube flanks and the light
blue line is the τ = 1 surface. The red lines are the τHoriz = 1
surface evaluated from the central axis of the tube. This is the
border beyond which radiation cannot penetrate inside the tube.

z=2.7

z=2.4

z=2.1
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Figure 8.4: Radiative Flux
profiles at three different
heights. Vertical dashed lines
are tube flanks. Only the area
around the tube is shown.

Figure 8.5: Temperature vs height in
the quiet atmosphere (solid line) and
in the center of the tube (dashed line).
The red lines show the corresponding
initial conditions temperature profiles.

z=3

z=2.6

z=2.4

z=2.2

z=2.1

Figure 8.6: Pressure profiles at
different heights. Vertical red
bars at the bottom indicate flux
tube flanks positions.

z=3

z=2.6

z=2.4

z=2.2

z=2.1

Figure 8.7: Density profiles at
different heights. Vertical red
bars at the bottom indicate flux
tube flanks positions.
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of the tube, is equal to one. They are almost vertical straight lines in the deeper
layers, where the opacity is very high, but in the outer layers, because of the
decrease of opacity, they bend horizontally to eventually expand beyond the tube
flanks. In this model this happens at z ≃ 2.15. Intensity of radiation originated
beyond the red lines is negligible compared to the intensity originating at points
within the lines. Therefore, at locations where the red lines are within the tube
boundaries (in this model in the lowest layers), the radiative channelling from
the flanks is not (or less) effective and no (or little) heating is observed, as shown
by fig.8.3 and fig.8.5. Heating starts to be efficient at depths smaller than z=2.4,
where the width of the horizontal optical depth surface is roughly half of the
width of the tube. In the higher layers the internal temperature increases until
it reaches the external temperature.

Channelling is thus more or less effective depending on the ratio of the tube
diameter D and the width of the τHoriz = 1 surface. This last quantity is thus
a useful horizontal scale unit (as it is, for instance, the pressure scale height for
vertical directions). In the following I will indicated with dτH the width of the
τHoriz = 1 surface at the bottom of the domain and will express the tube diam-
eter as multiples of this quantity. For the models in figures 8.3-8.7 dτH=2 grid
points and the diameter of the tube is D=10dτH . Figure 8.4 shows the flux in-
tensity profiles at three different heights. Along the tube axis the total radiative
flux decreases from the boundary bottom value, reaches the minimum at z=2.4,
then increases to eventually exceed the external flux value. At the deepest lay-
ers the decrease is induced by the increase of temperature in the area around
the axis, even though, at least in the deeper layers, these areas are beyond the
red lines (fig.8.3). The flux is indeed a measure of the ’difference’ between the
outgoing and incoming radiation and thus its value is more sensitive to small
variations of intensity. On the contrary the mean intensity, being a ’sum’ over
the different directions, is less affected by small variations. Consequently the
temperature value is the same of the initial condition in the deep layers, even
though the flux is decreasing. Note that the flux starts to increase again at
the same height at which the temperature along the tube starts to increases,
that is at z < 2.4. In these layers radiation from outside the tube can penetrate
and the flux increases toward the surface even though the temperature increases
with height. In order to clarify this point let us suppose, for instance, we want
to evaluate the flux at z = 2.3. The difference among the intensity value of
radiation that is generated above and below this point is expected to be small,
since the temperature gradient is small, and thus the flux should decrease. Nev-
ertheless, radiation from outside can penetrate. In the quiet atmosphere the
temperature gradient is higher and since also the temperature values are higher
than in the tube the total flux increases. In the upper layers it finally exceeds
the value of the outer atmosphere.

Figure 8.4 shows that even in the quiet atmosphere the flux increases when
approaching the surface. This result is not surprising. The radiative diffusion
approximation is in fact valid in the deepest layers, where outgoing and incoming
radiation have similar values and the Eddington approximation is exact (see
paragraph 5.2). In the upper layers, that is at optical depth lower than one, the
approximation is not valid and the flux is not balanced until the solution fully
relaxes away from its initial condition. In particular the increase is an effect of
the upper boundary condition imposed on the incoming radiation. Since this
value is set to zero the flux increases. We expect the effect in the tube to be
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enhanced by the evacuation that makes the outgoing radiation intensity inside
the tube higher than outside. Note that this makes the temperature to decrease
at the very top of the domain as shown in fig.8.5. The boundary effect is
observed because, as explained in previous chapter, the system has not reached
equilibrium yet when iterations are stopped. If the radiative equilibrium was
satisfied the flux would have been constant respect to height. It is important to
notice that this boundary effect, being smaller than the channelling effect, is not
responsible for the excess of flux observed inside the tube respect to the outer
atmosphere. An excess of flux is in fact observed even in ’cold’ models (not
shown) where the temperature at the top is lower and the flux decreases rather
than increasing. Moreover, if the boundary effect was the sole responsible of
the flux increase, the temperature would decrease inside the tube, as is observed
at the very top of the domain for both quiet and flux tube atmospheres, and
as observed in models A.A (see below). Finally, the ’wrinkles’ and spikes that
appear in the flux profiles inside and close the tube are also generated by the
different gradients of temperature inside and along the tube. In the relaxed
solution horizontal variations of the flux will still be there, with wrinkles because
of the discontinuity, only the horizontal average flux will be constant with height.

Figure 8.6 shows the pressure intensity profiles at different heights. The
small increase of pressure along the tube flanks are caused by the increase of
temperature. Note that the changes of temperature with height only slightly
affect the pressure gradient, as a consequence eq. 7.11. The density, instead, is
more sensitive to temperature variations, as illustrated by fig. 8.7. In the deeper
layers inside the tube, for instance, both pressure and temperature are higher
in the regions close to the flanks rather than at the axis. Relative variations of
pressure are smaller than relative variations of temperature and the density is
lower. In the upper layers variations of temperature along the direction perpen-
dicular the axis are small, while variations of pressure are still not negligible, so
that the pressure increases along the flanks. In the quiet atmosphere close to
the tube the increase of density is caused by the fact that the pressure value is
almost the same as the value in areas far from the tube, but the temperature is
smaller.

Figures 8.8 and 8.9 show temperature field and temperature versus height
for a model in which the physical conditions are the same as the ones in the
model shown above but the tube diameter is three times larger (D=30dτH). In
this case the red lines are always located inside the tube except at the very top
of the domain and heating is less effective than in the smaller tube. Even in
this case the flux (not shown) along the tube axis is lower than the external
one, decreases with height to reach a minimum at z = 2.2 and then increases
again, but never exceeds the outer flux value, this point being roughly located,
in previous model, at the level at which the horizontal optical depth lines cross
the tube flanks.

’Hot’ tubes: models A.A

These classes of models have been obtained imposing the same bottom boundary
value of the temperature inside and outside the tube. The presence of the
magnetic field is mimicked by imposing the internal pressure to be a certain
fraction of the external pressure. The initial conditions in the quiet atmosphere
are given by relations 7.15, 7.16 and 7.17. In the tube the temperature is the
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z=3

z=2

z=2.5

Figure 8.8: Temperature field (gray
scale) and temperature isocoun-
tours (white lines) of a ’cold’
flux tube in Radiative Equilibrium
whose diameter is three times larger
than in model shown in fig.8.3.

Figure 8.9: Temperature vs height
in a ’cold’ model where the diam-
eter is three times larger than in
the models shown in figures 8.3-
8.6. Solid black line: quiet atmo-
sphere. Dashed black line: temper-
ature along the tube axis. Dash
dot red line: temperature along
the tube in the smaller tube model
shown in fig.8.5.

same as outside, while the pressure profile is imposed to be a smaller fraction
of the external one. The density inside is evaluated by the perfect gas law.
These same conditions are kept at the bottom boundaries. Both the intensity
of radiation at the bottom and the value of optical depth are evaluated, as for
the previous models, by relations 7.13 and 7.12 and thus they have the same
value inside and outside the tube.

These models allow to investigate the sole effect induced by the reduction of
opacity consequent to the reduction of pressure and density inside the tube.

In the following I will illustrate results obtained reducing pressure boundary
value inside the tube to one third and two thirds of the external one. I will refer
to these models as A.A1/3 and A.A2/3 respectively.

Figures 8.10-8.13 show results obtained with models A.A1/3 for tubes of
two sizes: D=1.4dτH and D=4.3dτH (corresponding to 20 and 60 grid points
respectively). Figure 8.10 shows the temperature fields, the isothermal contours,
and the surfaces at which vertical and horizontal optical depth are equal to one.
Unlike the previous ’cold’ models, the tube and the surrounding atmosphere are
hotter than the quiet atmosphere and the heating is larger for the larger tube,
as also illustrated in fig.8.11. Since the initial condition for temperature are the
same inside and outside the tube (and thus the source term), in these models
the heating is consequence of the reduction of opacity (that is of the attenuation
term), induced by the reduction of pressure and therefore of density, inside the
tube. Thus, the larger the tube, the longer the lengths of sections of ray path
that cross the tube and the higher is the intensity. Large heating is observed
from the very first iteration. This also makes the opacity to increase, so that
temperature variations are smaller and smaller in subsequent iterations, until
the convergence criterion is satisfied. The dependence of temperature increase
on the ratio of tube diameter and photon mean free path (that is, in a more
pictured way, the relative position of tube flanks and τHoriz = 1 surface) is the
opposite of the one observed in ’cold’ models. In ’hot’ models the heating is
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Model A.A1/3

z=3

z=2

z=2.5

z=3

z=2

z=2.5

Figure 8.10: Temperature field, isothermal contours, τ = 1 and τHoriz =
1 surfaces for ’hot’ tubes models A.A1/3 in radiative equilibrium. Left:
D=1.4dτH (20 grid points). Right: D=4.3dτH (60 grid points).

Figure 8.11: Temperature vs height.
Solid line: quiet atmosphere at ra-
diative equilibrium. Dot dashed
line: temperature along the tube
axis for a structure of D=20 grid
points. Dashed line: temperature
along the tube axis for a structure of
D=60 grid points. Solid thick line:
temperature initial condition.

Figure 8.12: Flux in the radiative
equilibrium quiet atmosphere (con-
tinuous line) and along the tube axis
for a tube of D=20(dot dashed line)
and a tube of D=60 (dashed line)
grid points.

Figure 8.13: Density profiles at
two different heights for tube of
D=20 (continuous lines) and D=60
(dashed lines) grid points.
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larger in tubes whose diameter is larger than the mean free path and smaller
for models in which the diameter is lower than the mean free path. The large
difference of opacity also causes the discontinuity of the τHoriz = 1 surface when
this crosses the tube flanks. In particular, the red lines ’fan’ more rapidly with
height when they are located inside the tube rather than when they are outside.
Note also than in these models the tube is heating the surrounding, so that the
more the red lines expand from the tube flanks into the quiet atmosphere the
more this latter is heated, as shown by the isothermal contours.

In brief, the reduction of opacity inside the tube is the cause of temperature
increase in both cold and hot models. In cold models because of the channelling
of radiation from hotter surrounding atmosphere through tube flanks, in hot
models because the attenuation is smaller inside the tube. Therefore when
increasing the tube size heating is smaller in cold models and is higher in hot
models.

Figure 8.11 shows the temperature in function of height for the quiet at-
mosphere in radiative equilibrium and along the axis of the two size tubes
investigated. The temperature initial condition is also shown. It is worth to
notice that, close to the surface, the temperature of the quiet atmosphere in
radiative equilibrium is higher than the initial condition, i.e. is higher than the
value prescribed by the radiative diffusion approximation model. As for the
’cold’ models, this is an effect of the boundary conditions. In particular, the
initial condition temperature profile is such that the ratio outgoing/incoming
intensity radiation is very low, so that the flux decreases and the temperature
increases. In the tube the flux is higher than the surrounding atmosphere. This
is consequence of the fact that both the initial and boundary conditions for
temperature and pressure do not satisfy the diffusion approximation equations.
In particular the atmosphere inside the tube is more transparent to radiation
so that, being the boundary temperature values the same for the quiet and the
’magnetic’ atmospheres, the flux in the tube is higher. It increases from the bot-
tom to the top to reach a maximum at z ≃ 2.8. This increase is consequence of
the underestimation of the intensity radiation at the bottom of the tube. This,
in turn, is caused by the overestimation of the optical depth that is imposed
to have the same value as the external atmosphere, and not lower as should be
because of the reduction of opacity inside the tube. The effect is enhanced in
smaller tubes because of the (lower intensity) radiation that channels through
the flanks from the quiet atmosphere. After reaching the maximum, the flux
decreases. The decrease in this region is entirely due to the channelling from
the external regions, as also indicated by the fact that it is more important for
smaller tubes.

Finally, fig.8.13 shows the density horizontal profiles at two different heights
for the two models. The density is of course lower than the surrounding atmo-
sphere in the tube, but also in the regions adjacent because of the increase of
temperature.

Figures 8.14-8.16 show results obtained for models in which the pressure
value at the bottom of the tube is two thirds of the pressure value outside.
The opacity inside the tube is thus increased respect to previous models and
the distance of the τHoriz = 1 surfaces at each depth is smaller. In particular
also dτH is smaller and, in spite of the fact that the diameters of the tubes
analyzed are the same in grid points units (20 and 60 respectively), these tubes
are ”physically” larger (namely, D=5dτH and D=15dτH). Consequently the
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Model A.A2/3
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Figure 8.14: Temperature field, isothermal contours, τ = 1 and τHoriz =
1 surfaces for ’hot’ tubes models A.A2/3 in radiative equilibrium. Left:
D=5dτH (20 grid points). Right: D=15dτH (60 grid points).

Figure 8.15: Temperature vs
height. Solid line: quiet at-
mosphere at radiative equilib-
rium. Dot dashed line: temper-
ature along the tube axis for a
structure of D=20 grid points.
Dashed line: temperature along
the tube axis for a structure of
D=60 grid points. Solid thick
line: temperature initial condi-
tion.

Figure 8.16: Flux in the ra-
diative equilibrium quiet atmo-
sphere (continuous line) and
along the tube axis for a tube
of D=20(dot dashed line) and a
tube of D=60 (dashed line) grid
points.



www.manaraa.com

Radiative properties of complex magnetic elements 125

decrease of flux at the bottom is less evident respect to previous models and
is independent on tube size. For the same reason the flux is constant in the
tube in a larger range. The decrease of flux toward the top of the domain is
more important for the smaller tube as for the model A.A1/3. The temperature
and flux increase at the top of the domain inside the tube is lower respect to
previous models.

Models A.A1/3 and A.A2/3 show that when the tube is in thermal equilib-
rium with the surrounding atmosphere at the lower boundary, the temperature
inside the tube increases. It is thus reasonable to expect that the same would
happen in models C5.1P1/2, where the reduction of mixing length parameter
value and gas pressure inside the tube causes an increase of temperature inside
the tube in the subadiabatic layers and a small decrease of temperature in the
superadiabatic ones, if the radiative equilibrium with surrounding atmosphere
was imposed.

8.2 Intensity profiles at constant optical depth

8.2.1 An illustrative example

Intensity profiles at constant optical depth of discontinuous atmospheres show
features that depend on the atmospheric models employed and geometric prop-
erties of the tube. In order to have a general understanding of the different
profiles obtained with the simulations I describe here some results obtained
with a very simple model.

Let us consider for illustration the case of two atmospheres that are not
stratified, that is in which density, opacity and temperature are constant with
height. The values of these constants is lower in the tube rather than in the
not magnetized atmosphere. In particular let us suppose that in the tube the
temperature is null, thus imposing that the Source function is null as well. Note
that the opacity in the tube is not set to zero, so that this model represents
an highly idealized situation in which the flux tube is more transparent and
evacuated respect the surrounding atmosphere, but is not emitting radiation.
The intensity profile at the bottom is the same inside and outside the tube and
has an arbitrary value. Optical depth at the top of the domain is set to zero.
Figure 8.17 shows results obtained for four different lines of sight. In particular,
images on the right show the intensity values on the entire spatial domain. The
vertical lines indicate the tube flanks and the curve mainly made up of segments
is the τ = 1 surface. The corresponding intensity profiles are shown in plots on
the left.

It is interesting to notice how the τ = 1 surface changes with the sight
angle. For vertical directions the τ = 1 surface is located much deeper in the
tube with respect to the non magnetized atmosphere (Wilson depression), but
the difference in depth becomes smaller and smaller as the angle diminishes
(shallower directions). Moreover, at vertical directions the shape of the surface
resembles the one of the tube, while at shallower directions it is wider and
shallower. The shape can be easily understood considering that to variations
of angle of sight correspond variations of the length of the section of path that
crosses the tube. Being the tube more transparent, paths that cross more tube
are longer and paths that cross less tube are shorter. More details are given in



www.manaraa.com

Radiative properties of complex magnetic elements 126

Figure 8.17: Right: Intensity field in the 2D spatial domain for four different
view angles. Vertical white lines represent the flux tube flanks. Discontinuous
line is the τ = 1 surface. Left: Intensity profiles observed at τ = 1. Intensity
profiles present typical features that are strongly dependent on the sight angle.
Moreover, not zero contrast area extends around and asymmetrically around
the tube.

the appendix to this chapter. It is also important to notice that the shallower
the angle, the more ’non magnetized’ atmosphere is observed, the τ = 1 surface
extending more and more in the area close to the tube, but not inside of it.
The corresponding intensity profiles present very peculiar shapes. At vertical
directions the intensity in the tube is higher, since the intensity at the bottom
is constant and the tube is more transparent. At disk center (270◦) the positive
contrast area corresponds to the flux tube locations. As the angle diminishes
(off disk positions) the intensity peak diminishes and the profiles is deformed.
In particular a ’tail’ toward disk center (left, in the picture) is observed. In 250◦

case, for instance, this corresponds to the diagonal line of the τ=1 surface inside
the tube and by some points at its left. These last points correspond to rays that
generated inside the tube but that cross a lower and lower section of it, so that
the intensity slowly approaches the ’quiet sun’ one. With decreasing the angle
a typical ’two bumps’ structure appears. The bump on the right is generated at
points that correspond to the diagonal and horizontal lines in the quiet sun on
the right (away from the observer) of the τ=1 surface. The intensity is higher
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Figure 8.18: Left: Optical depth iso-contours for the model illustrated in fig.8.17
at angle 225◦. Right: corresponding intensity contrast.

because the source function is not null outside the tube, than it decreases inside
the tube (the straight diagonal line τ = 1 surface inside the tube corresponds
to the positive curvature line in the intensity profile), where the source function
is zero. The second bump on the left is formed by rays that partially cross the
tube. For shallower directions the bumps attenuate more and more. The bumps
on the right because the τ = 1 surface becomes shallower, the bump on the left
because the portion of path that crosses the tube is smaller and smaller respect
to the portion of the path that does not cross it.

Profiles here shown are just an example. Different shapes appear for different
atmospheric models and boundary conditions. These features can be understood
considering that different paths cross different portions of the tube, or do not
cross it at all, but generate at different depths, as shown in the example above.
In general positive or negative contrast area increase at shallower angles, thus
making the structure to appear larger at positions off disk center. The position
of the peak coincides with the center of the tube only at disk center. Off disk
the peak is shifted toward the limb and at shallower angles more than one peak
can appear. The observation of these features requires very high resolution (less
than 0.1 arcsec), and have been observed only recently (Lites et al., 2004). They
rise some observational issues. In particular, the not exact spatial coincidence
of the tube and the not zero contrast area should be taken into account when
comparing magnetogram and filtergram images, especially when dealing with
high resolution data. Magnetic field intensity measurements themselves, based
on Zeemaan splitting of some spectral lines, might be affected. Moreover, as
shown by fig.8.18, the intensity (in the figure the contrast) changes at different
optical depths and shows different features. This situation resembles observa-
tions carried out at different wavelengths, so that the same considerations made
for magnetograms apply to filtergrams.

In chapter 3 I illustrated measurements of contrast of facular regions ob-
tained identifying magnetic structures through comparison of images obtained
at different wavelengths. In particular, structures whose intensity contrast ex-
ceeded a certain threshold in CAIIK images were identified as magnetic. Other
techniques to detect magnetic structures exist, but most of them are based on
comparison with contemporary acquired magnetograms or on intensity contrast
measurement of images acquired in some ’magnetic sensitive’ lines or bands (Er-
molli et al., 2007; Tritschler and Uitenbroek, 2006). Analyses based on these
kind of identification techniques, especially the ones carried out on high reso-
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Figure 8.19: Model C5.1. Left: Intensity profiles along τ = 1 surface. Center:
Intensity profiles along τ = 25 surface. Right: Average intensity contrast at
different isotau surfaces and different disk positions.

Figure 8.20: Model C5.1P1/2. Left: Intensity profiles along τ = 1 surface.
Center: Intensity profiles along τ = 25 surface. Right: Average intensity con-
trast at different isotau surfaces and different disk positions.

lution data, might in particular be affected by the fact that non zero contrast
area do not always coincide with flux tube location and that intensity profile
features differ at different wavelengths.

8.2.2 Developed Models

In the following paragraph I present the results obtained by the analysis of the
photometric properties of the flux tube models described in previous section. In
particular I investigated the intensity contrast (not the intensity profiles as in
previous paragraph) along isotau surfaces at different sight angles. The different
optical depth values have been chosen in order to sample different layers of the
simulated atmospheres, thus mimicking observations at different wavelengths.
In particular, because of the H− opacity wavelength dependence, low values of
τ mimic observation at the shorter wavelengths (blue), while higher values of
τ mimic observations at higher wavelengths (red). The contrast is defined as
the ratio of the intensity along the isotau surface and the intensity in the quiet
atmosphere minus one. As intensity of the quiet atmosphere the intensity in a
point of the isotau surface ’far’ from the tube is chosen. In order to connect the
results to observations presented in chapter 3, the mean contrast over the entire
isotau surface as a function of the value of τ and the cosine of the sight angle µ
was also investigated.

Figure 8.19 shows results obtained for model C5.1 described above. The
contrast profiles at the two isotau shown (τ=1 and τ=25 respectively) are quite
different. The contrast at locations that correspond to the tube are negative
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Figure 8.21: Model A.A1/3. Left: Intensity profiles along τ = 1 surface
for D=20. Center: Average intensity contrast at different isotau surfaces and
different disk positions for D=20 grid points. Right: Average intensity contrast
at different isotau surfaces and different disk positions for D=60 grid points.

in both cases but the contrast is lower at τ = 1 rather than at τ = 25, that
is the contrast is lower if we ’look’ at shallow layers rather than at deep ones.
This is consequence of the fact that the opacity inside the tube is only slightly
lower than the opacity outside the tube (fig.8.1), so that the Wilson depression
is small and the isotau surfaces inside and around the tube occur almost at the
same height at which they occur in the quiet atmosphere. Since the difference
among the temperature inside and outside the tube increases going toward the
surface (fig.8.1) the contrast becomes more negative. For the same reason the
contrast inside the tube diminishes at shallow angles (the isotau surface shifts
in fact toward the top). Variations are larger at larger optical depth, where
the isotau surface locations vary largely with sight angle, and smaller at smaller
values of τ , for which the isotau surface locations are less dependent on sight
angle. These, in turn, depend on the variation of opacity with depth. Figure
8.1 shows in fact that in this model the opacity varies slowly with depth at the
top of the domain and faster toward the bottom.

The positive contrast wings on the right of the tube are the ’hot wall’ effect,
that is the enhancement of the intensity generated by the fact that off disk center
part of the observed intensity comes from the quiet (and hotter) atmosphere
adjacent to the tube. The enhancement is at the side of the tube that is closer
to the limb and further from the observer. The wing on the right is larger
at higher τ values, since at low τ values the isotau surfaces are almost flat at
shallow angles. The resulting contrast is thus very close to zero. The contrast
at the left of the tube (toward the observer) diminishes at shallower angles and
is more important at low vales of τ . At this side of the tube the observed
intensity is generated by rays that crossed the tube and that therefore have
’experienced’ a lower source function. At higher τ the effect is thus smaller,
since the temperature inside and outside the tube are closer. The effect is also
more important at shallower angles, for which the portion of a ray path length
that crosses the tube is larger.

Inspection of the plot of average contrast versus µ reveals that the mean
contrast is largely dominated by the contrast of the locations inside the tube.
At larger optical depth, in fact, the decrease of contrast toward the limb is
larger than at smaller optical depth and the value of average contrast is smaller
at high values of τ , as shown for contrast profiles inside the tube.

Figure 8.20 shows results obtained for model C5.1P1/2. As for the previous
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Figure 8.22: Model B.A. Left: Contrast profiles along τ = 1 surface for D=20.
Right: Average intensity contrast at different isotau surfaces and different disk
positions for D=20 grid points.

case the contrast profiles and average contrasts largely depend on temperature
stratification. In general the isotau surfaces investigated are located, with the
exception of the τ = 25 one, at depth for which the temperature inside the tube
is higher than outside, that is, from fig.8.2, at z<2.8, so that the contrast is
positive and increases when the optical depth decreases (toward th top of the
domain). At τ=6, as observed on PSPT data, the contrast increases toward the
limb because the isotau surfaces shift toward the top of the domain, where the
differences of temperature among the tube and the quiet atmosphere are larger
(in this case close to the surface the tube is hotter than the quiet atmosphere
and the contrast is positive). At τ=0.4 the average contrast diminishes from the
center to the limb because, while isotau surfaces locations slightly shift toward
the top of the domain, the optical path travelled by outgoing rays increases.
The τ=1 case is in between the τ=0.4 and τ=6 ones. As also shown by the
contrast profile (fig.8.21, left), at µ <0.6 the contrast increases when µ decreases
because of the increase of temperature difference explained for τ=6. At µ >0.6
the contrast decreases when µ decreases for the same reasons explained for
τ=0.4. The contrast profile and the average contrast at τ=25 are very peculiar,
since they show a minimum at about µ=0.6. At disk center, in fact, the isotau
surface inside the tube is located much deeper than outside (that is the Wilson
depression is large) because the opacity is lower (see fig.8.2). The contrast is
thus positive even though the temperature inside the tube is lower than outside
at the same height. Off disk center the location of isotau surface outside the
tube shift less than inside (the Wilson depression diminishes) and the contrast
diminishes. The contrast diminishes until the isotau surface crosses the point
above which the internal temperature is higher than the external temperature
(from fig.8.2 at z=2.8). A minimum is thus observed at µ=0.6. At smaller µ’s
the contrast increases toward the limb (the shallower the angle the higher is the
difference of temperature inside and outside), as shown also by contrast profiles.
The excess of temperature inside the tube respect to outside also explains the
features of average contrast of model A.A1/3 shown in fig.8.21 (center: D=20,
right: D=60 grid points). The contrast is positive and decreases from disk
center toward the limb even though the temperature differences get larger and
larger toward the surface (and therefore toward the limb). This is due to the
fact that when moving from disk center to the limb the isotau surfaces shift
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upward more inside the tube rather than outside (that is the Wilson depression
decreases) and the difference of temperature decreases rather than increase.
The decrease of contrast toward the limb is lower for lower values of τ since the
Wilson depressions decrease is lower and the isotau surfaces are located toward
the top of the domain (see fig.8.11) where the tube is hotter and hotter than the
quiet atmosphere. Figure 8.21 (left) also shows that the contrast is dominated
by radiation coming from locations within the tube at disk center (µ=1), while
the more µ decreases the more the radiation coming from area surrounding the
tube becomes important. For this reason at µ=1 the contrast increases with τ
while the opposite is observed at µ <1. Finally all these effects are enhanced
when increasing the tube diameter (fig.8.21, right).

Figure 8.22 shows finally contrast profile and average contrast for model B.A.
The contrast profiles show features that were absent in previous profiles and that
are generated by the temperature stratification. The two ’horns’ observed at
disk center are generated by the increase of temperature when moving from the
tube axis toward outside (see fig.8.5). Because of the Wilson depression, the
contrast is null or positive inside the tube. Instead, along the isotau surface in
the quiet atmosphere close to the tube, the temperature is lower respect to the
temperature on the same isotau but far from the tube (the quiet atmosphere
by definition) so that the contrast drops down (is negative) and than slowly
increases to zero. When moving toward the limb a deep is observed toward
the observer sight. This is also an effect of the decrease of temperature close
to the tube. At the area corresponding to the tube location and to the area
toward the limb, the contrast is positive and higher than at disk center, since
the isotau surface is shifted upward, where the temperature value inside (and
around the tube) is closer to the value of temperature in the quiet atmosphere.
The decrease at the lowest µ’s is due to the increase of optical path length,
as explained for previous models. The average contrast plot reveals that the
contrast is negative and slightly dependent on disk position and optical depth.

8.3 Ratio of contrasts

In chapter 3 I showed that the ratio of contrasts measured on PSPT images at
two different wavelengths is not constant with respect to disk position, as instead
expected by the black body approximation (Allen, 2000). In order to interpret
these results, in this paragraph I show results obtained with simulations. Since
the models developed are gray, I have investigated the ratio of intensity contrasts
measured at different optical depths. This approximation is justified by the fact
that, as already explained, different wavelengths sample different layers of the
atmosphere. Figure 8.23 shows the ratio of contrast measured at different values
of τ in function of disk position for two of the models developed, namely the
C5.1 and the A.A1/3. In particular the plots show the ratio of the contrast
measured at the lowest value and the other three values of τ analyzed for the
models (in chapter 3 I investigated the ratio of blue contrast respect to red
contrast, where the blue samples a higher layer of the atmosphere). Both plots
show that the ratio is not constant, but of course reflect the variations observed
for the average contrast with µ. It is worth to notice that while for model
C5.1 the ratio decreases monotonically toward the limb, for model A.A1/3 a
monotonic decrease is observed at µ <0.9, while a deep minimum is observed
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Figure 8.23: Ratio of average contrasts for model C5.1 (left) and model A.A1/3
(right).

at µ=1. This difference is ascribed to the fact that, as already explained in
previous paragraph, for model C5.1 the average contrast is always dominated by
radiation that comes from the tube, while for model A.A1/3 from the center to
the limb the average contrast is more and more dominated by radiation coming
from the area surrounding the tube.

None of the simulated flux tubes reproduces the experimental curve in fig.3.4.
Nevertheless, the fact that the simulated profiles show that the ratio of contrast
is not constant respect to µ, that in some cases largest variations are observed
at disk center, and that from the Eddington model a slight dependence on µ is
expected (see the Appendix to this chapter), suggest that the measured contrast
is dominated by the intensity that comes from the tube at disk center, and from
the ’walls’ off disk center.

The fact that the ratio of contrasts measured at different wavelengths can-
not be constant respect to disk positions and that the largest variations are
expected at disk center can also be qualitatively explained even by using the
Black Body approximation. Formula 3.2, according to which the ratio of con-
trast is inversely proportional to the ratio of the wavelengths, comes from the
Wien approximation to the Plank function:

B(λ) ≃ 2hc2

λ5
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hc
λKT (8.3)

deriving the formula respect to T

dB

dT
=

2hc2

λ5

hc

kλT 2
e−

hc
λKT (8.4)

from which
dB

B
=

hc

kλT 2
dT (8.5)

If we suppose that the atmospheres in the quiet sun (that I will indicate with
subscript q) and the tube (subscript f) emit as black bodies at two different
temperatures, Tq and Tf respectively, we have

If (λ, Tf ) − Iq(λ, Tq)

Iq(λ, Tq)
=

∆I(λ)

I(λ)
=

∆B

B
=

hc

kλT 2
∆T (8.6)



www.manaraa.com

Radiative properties of complex magnetic elements 133

If (λ, Tf ) − Iq(λ, Tq)
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and the ratio of the contrast measured at two wavelengths is
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If ∆T1 = ∆T2 = Tf −Tq and T1 = T2 = Tq, or, more in general if ∆T1
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each disk position, than the ratio of the contrasts is equal to the inverse of the
ratio of the wavelengths. Since the atmospheres in the magnetic structure and
in the ’quiet sun’ are differently stratified, and since observations at different
disk positions sample different layers of the atmosphere, these equalities are not
in general satisfied and the ratio of the contrast is not constant with µ.

8.4 Comparison with Observations and Conclu-

sions

The different models investigated have produced very different results. The
contrast profiles have typical features that mainly reflect the temperature strat-
ification. The mean contrast can increase, decrease or have maxima or minima
depending on the model and on the isotau surface value we look at (that means
the observation wavelength). Among the models analyzed, the C5.1P1/2 one,
in which both convection and pressure reduction were taken into account, is the
one that qualitatively reproduces the observed CLV of the contrast in blue and
red bands. The average contrast at τ=6 is positive and increases from the cen-
ter to the limb, like results obtained with PSPT data shown in chapter 3, while
increases up to a certain value of µ to decrease at the very limb at smaller values
of τ , as observed by other authors (e.g. Ortiz et al., 2002). Models C5.1P1/2
thus show clearly that discrepancies of results presented by different authors
must be imputed not only to resolution or image analyses techniques employed
(as shown in chapter 3), but also to the wavelengths and filter widths employed
during the observations.

As already explained, the relation between contrast and disk position de-
pends on the temperature stratification inside the tube with respect to the
stratification outside and the opacity function, that determines the position
and shape of the isotau surface. The importance of both physical quantities
is shown by the fact that in both models A.A and C5.1P1/2 the temperature
is higher in the tube respect to outside, but the Wilson depression is lower in
models C5.1P1/2, so that the contrast is lower in these latter models rather
than in models A.A.

The small contrast observed in PSPT images thus suggests that the tem-
perature difference at locations where observed intensity comes from is quite
small.

On the contrary, none of the models analyzed reproduces the CLV of the
ratio of contrasts. Most likely this is due to the fact that in most of the models
the contrast is dominated by the intensity that comes from the tube, while, as
explained in previous paragraph and in the Appendix, plot in fig.3.4 suggests
the contrast to be dominated by the intensity that comes from the tube at disk



www.manaraa.com

Radiative properties of complex magnetic elements 134

center and the one that comes from the surrounding quiet atmosphere (the wall)
toward the limb.

Simulations have also shown that the same model can produce different CLV
profiles depending on the depth of the constant tau surface and that in order
to infer physical properties of magnetic structures measurements at different
wavelengths are fundamental.
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Chapter 9

Conclusions and Future

Work

In this thesis I have investigated photometric and geometric properties of mag-
netic bright features on the solar lower atmosphere. The investigation has con-
cerned both theoretical and experimental aspects and has been carried out using
image analysis and numerical simulations.

In the first part of the thesis I show results obtained by the analysis of
medium resolution full disk images. In particular results obtained by the analy-
ses of Rome-PSPT images, acquired in blue and red continua and CaII K during
summers 1998-2005 have been shown.

Geometric properties have been investigated by the study of the fractal di-
mension of the identified features. Among the multitude of fractal dimension
estimators presented in the literature, two estimators, based on the perimeter-
area relation, have been employed. The perimeter-area relation was chosen
because it allows to easily evaluate the fractal dimension of a large amount
of features and because it was employed by other authors that analyzed data
similar (for resolution and observation wavelength) to the PSPT ones. In or-
der to compare results with previous works, that looked at magnetograms and
CaIIK images, geometric properties of features identified on CaIIK data were
investigated.

Results obtained agree very well with the ones presented in the literature.
In particular I have shown that the fractal dimension increases with feature size
at areas smaller than about 2000 Mm2. At areas larger than this threshold the
fractal dimension has the constant value 1.6. Theoretical explanations, based
on the fact that 1000-2000 Mm2 corresponds to the scale of supergranulation,
have been proposed in previous works. Nevertheless, fractal dimension estima-
tion of features defined on digital images is indirect and requires several stages,
each of which introduces a certain degree of arbitrariness. The effects of im-
age segmentation, pixelization, perimeter algorithm estimation and resolution
have thus been investigated. The analyses, carried out on both fractals whose
dimension is known by the theory and PSPT images, have shown that all these
aspects influence the estimation of fractal dimension. In particular the increase
of fractal dimension with feature size is due to pixelization, that is to the impos-
sibility to represent on a square grid (i.e. a CCD) curves and not grid allined
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lines. The minimum area threshold above which pixelization effect is negligible
is, for the estimators employed, between 500 and 1000 pixels squares, that cor-
respond to about 2000 Mm2 on PSPT images (and also on images employed in
previous analyses). The occurrence of the threshold at supergranular scales is
thus accidental and conclusions drawn in previous works should be revisited.

The dependence of fractal dimension on solar activity cycle has also been
investigated. Variations have been observed at areas larger than about 2000
Mm2 for the different years analyzed. Nevertheless these variations are not
clearly correlated with solar cycle and can be included in the deviations of
measurements. More details about these results can be found in Criscuoli, Rast
et al., 2007.

Photometric properties of faculae have been investigated by the analyses of
their contrast measured in blue, red and calcium images. Magnetic features have
been identified on calcium images by a threshold technique. In CaIIK images,
that sample chromospheric layers, the average contrast of faculae is high (about
30%) and is almost independent from disk position. In blue and red observa-
tions, that sample photospheric heights, the average contrast is much lower than
in chromosphere (around 5%) and increases with disk position. These results
agree with the ones obtained by other authors by the analysis of data taken at
similar wavelengths and resolution and that employed thresholding techniques
similar to the one we adopted to select features on images. Authors that em-
ployed magnetograms to select structures, usually obtained negative contrast at
disk center and a maximum positive contrast at about µ=0.4. The dependence
of maximum average contrast on features area has also been investigated. I have
shown that in the three wavelengths maximum contrast increases with feature
size at areas smaller than about 2000 Mm2 and that above this threshold a
constant contrast is observed. That is maximum contrast varies like the fractal
dimension with respect to features area. By contrast, a similar trend is observed
for average contrast measured in Calcium, while a decrease with feature size at
areas smaller than 2000 Mm2 and a constant average contrast above this thresh-
old, is observed in blue and red continua. The different scaling of maximum and
average contrast with respect to area was interpreted as a signature of the fact
that faculae are collections of smaller magnetic elements of different sizes. The
increase of average contrast with area is instead most likely a filling factor effect.
Results thus indicate that in smaller features the number of magnetic flux tubes
in a single pixel is lower than in larger ones. The similarity of plots of contrast
and fractal dimension versus area is therefore generated by different effects. The
ratio of contrasts measured in blue and red at different disk positions has also
been investigated. This ratio is not constant with the heliocentric angle µ, as
one might expect by the black body approximation, and larger variations are
observed at disk center. A complete description of results obtained is given in
Ermolli, Criscuoli et al., 2007.

In order to interpret the experimental results and validate some of the con-
clusions drawn, theoretical models and numerical codes to simulate flux tubes
and their photometric properties have been developed. To date these models
assume LTE and gray atmosphere. In particular a code that solves the radiative
transfer equation for different directions in a non uniform plane parallel atmo-
sphere by the technique of short characteristic has been developed and tested.
As explained in chapter 5, this technique requires the evaluation of several in-
tegrals and interpolations between adjacent points of the grid that samples the



www.manaraa.com

Radiative properties of complex magnetic elements 137

space. Different integration and interpolation techniques have been thus imple-
mented and compared in order to evaluate numerical effects on the final result.
Tests have shown that spurious effects are more important for shallow angles,
the number of interpolations being larger and the effective spatial resolution
(the grid space) being poorer for these directions. Two quadrature techniques
to evaluate the radiative flux and mean intensity have also been developed and
evaluated. In particular I have shown that the Carlson scheme, the one usually
employed in radiative transfer problems, might not give results accurate enough,
the maximum order allowed per octant being too low to sample the radiation
field.

Several static flux tube models have been developed for numerical simula-
tions. In particular two classes of models have been investigated. In the first
one the energy transport mechanisms considered are convection, modelled by the
Mixing length theory, and radiation, under the assumption of radiative diffusion.
In the second class only radiative processes have been considered, but radiative
diffusion approximation is dropped and radiative equilibrium has been imposed
by an iterative scheme. In both cases pressure equilibrium was not imposed and
the presence of magnetic field was mimicked imposing at the bottom boundary
layer the gas pressure inside the tube to be lower than outside. The equations
solved to build the models (energy, pressure and state) have been normalized
thus allowing a parametric investigation. Boundary and initial conditions have
been chosen in order to mimic two situations. In the first one the temperature
and pressure are lower at the bottom boundary layer, thus reproducing flux
tubes formed by collapse mechanisms, in the second one the temperature at the
bottom of the tube is the same as outside, thus reproducing the situation of a
thermalized structures that rise, because of buoyancy, from the deepest layers of
the atmosphere. In models with convection the presence of magnetic field was
also mimicked imposing a lower value of mixing length parameter inside the
tube. I have shown that in these latter models the reduction of mixing length
efficiency causes a decrease of temperature inside the tube respect to outside in
the lowest layers, while an increase is observed at the upper layers. This shows
that it is possible to have heating inside the tube without invoking radiative
channelling through the tube flanks.

This latter effect is instead observed in ’cold’ models in radiative equilibrium,
that is models in which as initial and boundary conditions the temperature
inside the tube is lower than outside (models B.A). In particular simulations
have shown that heating is due to the channelling of ’hotter’ radiation from
outside into the (more transparent) tube and is thus observed for structures
whose radius is smaller than twice the horizontal optical depth. For ’hot’ models,
that is models in which as initial and boundary conditions the temperature
inside the tube is the same as outside (models A.A), heating is observed as well,
but in this case the increase of temperature is consequence of the reduction of
opacity (attenuation) inside the tube, so that the larger the tube the higher is the
increase of temperature. The analysis of the flux also reveals that the radiative
equilibrium is not reached yet in any of the models. Radiative equilibrium is
in fact imposed, as in some previous works, by an iterative algorithm, that is
stopped when the difference of temperatures among two consecutive iterations
is lower than a certain threshold. This method, also employed by other authors,
allows to reach convergence in few iterations and to obtain temperature, pressure
and density fields very close to the radiative equilibrium ones. Nevertheless, the
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flux converges more slowly, so that radiative flux is not uniform all over the field
even though the other physical quantities have reached the convergence. Some
boundary problems have also been discussed. Finally an increase of density and
a decrease of temperature is observed around the tube in ’cold’ models. This
result is very important since it shows that the presence of magnetic flux tubes
can drive convection and that they ’cool’ the atmosphere.

The analyses of the intensity contrast of radiation across the tubes have
revealed that, depending on the different models, several features, whose con-
trast can be either positive or negative, are present. An area larger or smaller
than the tube itself can thus appear darker or brighter than the non magnetic
atmosphere depending on both the thermal structure of the tubes and the an-
gle at which it is viewed. Because the same magnetic flux tube can generate
areas of different contrast around it, more than one feature can be detected
by thresholding techniques. As shown for instance by Lites et al. (2004), these
features have typical spatial scales smaller than the tube size (some hundred of
kilometers), so that they are very difficult to observe and thus we expect them
to be detected only in very high resolution observations (better than 0.1 arc-
sec/pixel). These features reflect both temperature and opacity stratification
differences inside and outside the tube and are generated not only from radia-
tion that comes from within the tube, but also from the surrounding area. The
mean contrast at different optical depths has also been investigated. Results
have shown that even for the same model, the variation of contrast with disk
position can be very different when looking at different optical depths, a mono-
tonic increase, a maximum or a minimum being for instance observed for models
with convection (models C) at different values of τ . This shows that when com-
paring observational results obtained by different authors is very important to
take into account the wavelength and the filter width of observation, since these
determine the layers from which radiation comes from. Discrepancies observed
in the literature concerning the center to limb variation of contrast of faculae
are thus partially explained. Among the models developed, the one that best
reproduces PSPT results is the model in which both convection and pressure
reduction have been taken into account, since this is the only model that has
produced a monotonic positive increase of contrast from the center to the limb.
This suggests that the temperature in the tube is lower than outside in the
deepest layers and that is higher in the highest layers. On the contrary, none of
the models reproduces the center to limb variation of ratio of contrast observed
in PSPT images. I have showed that the observed variation of ratio of con-
trasts suggest that the contrast is dominated by the ’non magnetic’ atmosphere
(observed at deeper layers because of the presence of the flux tube) toward the
limb, and by the radiation that comes from within the tube at disk center. In
the models developed, instead, the contrast is mostly dominated by radiation
that comes from the tube (with the exception of ’hot’ models). This can be
probably ascribed to the fact that the structures simulated are not in horizontal
pressure equilibrium so that the fanning, expected in the highest layers of the
domain because of the gravitational vertical stratification of the atmosphere, is
not present and the flanks of the tube are vertical. If fanning was taken into
account the isotau surface would extend for a larger area in the non magnetic
atmosphere thus increasing its contribution to the contrast of the structure.

In order to validate the conclusions here drawn, it is thus important to im-
prove the models developed. In particular it is important to include horizontal
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pressure equilibrium. Models with convection need also to be in radiative equi-
librium, since radiative effects can sensibly change the temperature and opacity
stratifications inside the tube. Finally, properties of one structure have always
been investigated. In full disk medium resolution images, more than one ele-
ment fills each pixel of the detector so that, in order to interpret these kinds
of data, it is important to study contrast and physical properties of clusters of
tubes. This will help not only in the investigation of center to limb variation of
contrast, but will also help in the understanding of its variation with object size
and in the investigation of correspondence of high magnetic field concentrations
and bright features. These aspects will be investigated in near future works.

A further validation will come from the analysis of high resolution data. In
fact, results obtained by the simulations also indicate that in order to evaluate
the temperature stratification inside magnetic structures it is important to ob-
serve them at different wavelengths with high resolution data. To address this
topic two observing campaigns have been already carried out in 2005 and 2006
at the Dunn Solar Telescope, at National Solar Observatory (New Mexico), in
collaboration with the Solar Group at Rome ’Tor Vergata’ University. This
telescope allows to obtain 0.25 arcsec/pixel images and, when operating with
IBIS monochromator, it also allows to obtain high spectral resolution frames
(the resolving power is about 250000). In particular images were taken in two
photospheric lines (FeI 7090 Å and FeII 7224 Å), a chromospheric line (CaII
8542 Å), white light and G-band. Results obtained by these campaigns are now
under analysis. The comparison with developed models will give a good im-
provement in our understanding of physics of small magnetic elements. A third
campaign has been recently carried out at the New Swedish Solar Tower at La
Palma (Spain), in collaboration with Solar Group at Osservatorio Astronomico
di Roma, IAC and University of Valencia. This telescope allows to obtain 0.1
arcsec/pixel images. Observations have been carried out in the G-band, which
sample the photosphere. Since in this wavelength magnetic structures have
high contrast (about 30%), we hope to make use of these data to improve our
understanding of their geometric properties. A comparison with contempo-
rary acquired magnetograms will also allow to investigate the correspondence
of magnetic features and bright elements.
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Appendix A

Appendix to Chapter 2

A.1 Fractal dimension measurement of Non-fractal

objects

Figure A.1 plots d1 (first row) and D (second row), evaluated using the differ-
ent perimeter finding algorithms explained in chapter 2, as a function of object
size for three non-fractal objects: squares, right triangles, circles. The fractal
dimension d1 is evaluated as explained in paragraph 2.4, while D is evaluated
as a function of object size by fitting the perimeter-area relation only above
a minimum threshold size. Since the Sides and the Roberts techniques yield
almost to identical results, plot shows those obtained with the Sides and 8-cont
methods only. Note that the correct fractal dimension, 1, is obtained indepen-
dent of object size only for the square and only when applying the Sides/Roberts
algorithms. In all the other cases d1 and D are functions of the object size and
tend to 1 only as the area increases. In the case of the Sides/Roberts meth-
ods, this results directly from image pixelization, from errors introduced by the
impossibility of reproducing on a rectangular grid curves or non–grid-aligned
lines. For example, the right triangles I examined were constructed to have two
of the sides grid-aligned. The hypotenuse length was thus always over estimated
because of image pixelization. This leads to relative errors in the Sides/Roberts

perimeter measures which are independent of object size, 2−
√

2
2+

√
2
≈ 0.17 and an

error in the area measure which scales as 1
l , where l is the length of the tri-

angle’s side. The relative error in the 8-cont perimeter measure, on the other
hand, is not independent of object size. Consider grid aligned squares. They
have areas of {1, 4, 9, 16. . . } with no pixelization error, but 8-cont perimeters
of {1, 4, 8, 12. . . } instead of {4, 8, 12, 16. . . }, so that the relative error in the
perimeter decreases for squares greater than one pixel in area, as 1/l, where l is
the length of the side of the square. The fractal dimension is thus over estimated
when employing the 8-cont perimeter measure, with the error decreasing with
increasing object size. For circular objects, pixelization causes an underestima-
tion of fractal dimension when the Sides/Roberts perimeter measures are used,
while the 8-cont perimeter measure continues to produce an over estimation.
With the exception of grid aligned squares, the errors in fractal dimension for
small area objects are non-negligible, and substantial errors persist to objects of
significant size. Table A.1 indicates, for each method and geometric figure, the
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Figure A.1: Fractal dimension d1 (first row) and D (second row) of a square, a
triangle and a circle as a functions of area and minimum area threshold respec-
tively (see text) obtained using two different perimeter estimation algorithms.
Crosses: external sides. Triangles: 8-contiguous points. Because of perimeter
definition and pixelization effects (see text) the fractal dimension is a function
of the object size. The error is larger for smaller objects, and an overestimation
or underestimation may occur.

minimum area above which the error in d1 is less than 5% or 1%. For circular
objects the error never drops below 1%, independent of the perimeter measure
employed, even for areas exceeding 5000 square pixels, although, for all shapes
studied, errors of less than 5% are achievable for object sizes greater than 1000
square pixels.

A.2 von Koch snowflake

von Koch snowflake images of different sizes were produced following the iter-
ative scheme of Peitgen and Jurgen (1992). After each iteration, or level, the
snowflake is more structured, with an increase in both perimeter and area. In
the limit of infinite iterations, the perimeter tends toward infinity and the area
approaches a finite value. Here I investigate structures constructed with up to
6 levels. The fractal dimension of the von Koch snowflake is log 4/ log 3 ≈ 1.26.

In fig. A.2(left), the perimeter-area relationships for snowflakes of levels 2,
4, and 6 are plotted with logarithmic scaling. For each level, the relationship
traces a curve made up of segments whose slope is 1/2 connected by segments
of slope greater than 1/2. At largest areas all the points lay on parallel lines
of slope one-half. At those scales the snowflakes of all the represented levels
are fully resolved on the grid employed. As the dimensions of the objects are
reduced, fewer details at any fixed construction level are resolved, the measured
perimeter decreases at a rate faster than A1/2, and the perimeter-area curve
steepens. The slope flattens to a value of one-half again each time the grid
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Figure Sides/Roberts 8 − cont
Error ≺ 5%

Square Always 500
Triangle Always 950

Circle 270 350
Error ≺ 1%

Square Always Never
Triangle 1450 Never

Circle Never Never

Table A.1: Minimum area above which the error in d1 estimation is less than
5% and 1%, for each method and geometric figure analysed.

resolution is sufficient to capture the details of the next lower level. Finally, at
smallest areas most geometric detail is lost and all the objects, independent of
their initial construction level, appear non-fractal.

The scaling of d1 better illustrates the changing of slopes with objects size.
As an example in right panel of fig.A.2 I show results obtained for level 6.
Here full and open dots represent respectively d1 obtained with a window of
∆ log A = 1.5 and a window of ∆ log A = 0.5. With the largest window only
the slope change that occurs at largest areas is visible. The others occur on
scales smaller than the window so that they are not ’detected’ and a plateau is
observed. At smallest areas d1 drops because of the resolution effects explained
before. When a smaller window is used 6 peaks are visible, corresponding to the
6 slope-changing visible in the perimeter area scatter plot. In this case there
is an area range in which fractal dimension oscillates around a constant value.
At smallest areas larger amplitude oscillations are observed, with a net signal
increase with object size.
Both curves show clearly three regimes. The object scales as a fractal in the
range 3 < log(Area) < 4.5. At smaller and larger area pixelization effects dom-
inate the measurements. At smaller areas because resolution is not enough to
detect structures details, at larger areas because the objects are fully resolved.
In order to correctly estimate the fractal dimension, perimeter-area fit had to
be performed in this area range. Fits performed over larger or different ranges,
lead to an underestimate of fractality. Plot also shows that small area-range
measure ’local’ slope changes and give wrong estimate of fractal dimension as
well. The choice of the area range and width over which the fit is performed is
thus critical.
In this case, the largest window ∆ log A = 1.5 leads to the most correct results.
In order to measure the lower bound of the range over which the snowflake is
fractal and the plateau value of d1, I fit the function d1 = a+b ·exp (−k · log A),
for k > 0, to the d1 versus A data over the full area range extending to
log A < 4.5, that being the value beyond which the level six snowflake is fully
resolved. Parameter a then gives an estimate of the fractal dimension of the von
Koch snowflake, while the area A at which the relative difference between the
two terms becomes less than 1% is an estimate of the minimum size at which the
discrete grid is still able to capture the snowflake fractality. I obtained a = 1.34
and log A ≃ 3. Direct fits to all points in the perimeter-area plot above and
below log A = 3 yield D = 1.21 ± 0.03 and D = 1.31 ± 0.007 respectively. I no-
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Figure A.2: Left: Perimeter versus area in logarithmic scale of snowflakes of
levels 2,4 and 6. Because of pixelization, these structures scale as fractals only
at certain area range, bounds depending on the level. Right: d1 versus area
evaluated with different window sizes for snowflake of level 6. Peaks obtained
with the small window (open circles) are due to the steep variations visible in
plot on the left. Peaks are not detected with a larger window (full circles). The
area range in which d1 is almost constant is the range in which simulated images
are fractals.

tice that these values for both d1 and D at highest areas exceed those expected
theoretically. This reflects the overestimation of snowflake perimeter inherent in
the perimeter measure algorithm employed, as discussed previously for simple
non fractal triangles. Here, the largest area snowflakes have the most well re-
solved triangular boarder structure yielding an increase in perimeter error with
size combined with a slower growth in area error.
Figure A.3 shows d1 estimates obtained on vonKoch snowflakes images con-

volved with Gaussian functions of widths 2,4,6 and 8 pixels. The more the
image is degraded the more the fractal dimension is underestimated, with a
larger effect at smallest areas.

A.3 Fractal dimension measurement of Fractional

Brownian motion patterns

Images obtained by fractional Brownian motion have been widely used for sim-
ulation of interstellar clouds and terrestrial atmospheric clouds (Vogelaar and
Wakker, 1994; Stutzki et al., 1998; Ossenkopf et al., 1999; Bensch et al., 2001;
Miville-Deschênes et al., 2003). They are particularly well suited for use in algo-
rithmic tests because they allow the construction of images containing structures
of arbitrary but known fractal dimension. The images are constructed in Fourier
space to have random phase and a power-law power-spectrum P :

P (f) ∝ f−β,
where f is the spatial frequency. For a two-dimensional image the power-law
index β is related to the box counting dimension DB as

β = 8 − 2DB

(Turner et al., 1998). Moreover, the perimeter-area fractal dimension D of the
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Figure A.3: d1 evaluated on vonKoch snowflakes images convolved with gaussian
of different widths. As the image degradation increases the fractal dimension
estimates decrease. The effect is more relevant at smallest areas.
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Figure A.4: (a) fbm β = 2.8. d1 evaluated for three different threshold values.
(b) fbm β = 2.8 and β = 2.4. d1 evaluated on original (full symbols) and
degraded images (open symbols). Each curve is obtained combining perimeters
and areas obtained with 7 different thresholds.
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contour levels of a two-dimensional image (its zero sets) is related to the box
counting dimension as D = DB −1. Vogelaar and Wakker (1994) confirmed this
relationship using fBms of fractal dimension 1.2 and 1.6. Bensch et al. (1998),
however, found a systematic discrepancy at highest and lowest β fBms tested.
For this study I have generated two sets of 150 independent fBm images, one
with spectral index β = 2.8 and one with spectral index 2.4, corresponding to
a fractal dimension D equal to 1.6 and 1.8 respectively. To each set of images
seven different intensity thresholds were applied. The perimeters and areas of
the structures within each set were then measured. Figure A.4 (left) presents
the results obtained with threshold values, 0.6, 0.75, and 0.85, on normalized
fBms images produced with β = 2.8. All the curves show that, as was the case
for both the non-fractal objects and the von Koch snowflakes, because of pix-
elization the fractal dimension is a function of the size of the object. Moreover,
increasing the threshold causes an increase in the fractal dimension deduced for
larger structures and a decrease in the measure for smaller structures. The same
is observed for the set β = 2.4. This is partially due to the fact that the same
object have different area when selected with different thresholds. Moreover,
biggest structures appear more discontinuous and more voids are created when
increasing the threshold, thus increasing the perimeter and reducing the area,
and therefore increasing the fractal dimension. Variations are small though,
generally within the error bars, especially at smaller areas, and are significant
only at highest thresholds. The value of D is 1.52, 1.51 and 1.499 respectively.
The small decrease obtained increasing the threshold is due to the decrease of
big structures and the consequent larger weight of smaller structures in the fit-
ting.

Figure A.4 (right) shows results obtained combining data from the seven
zero sets for the two sets of fBms generated. Both cases show that fractal
dimension increases at smallest areas, to become constant at larger areas, as
observed for vonKoch snowflakes. The value assumed by d1 at the plateau gives
an underestimate of fractal dimension in both cases, whereas an overestimate
was measured for snowflakes.

Figure A.4 (right) also shows results obtained combining data from the seven
zero sets for the two sets of fBms images convolved with a Gaussian function
of amplitude 2 pixels. As for vonKoch snowflakes, image degradation causes
an underestimate of fractal dimension at all scales and the effect is larger at
smallest scales.
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Appendix to Chapter 6

I want to show that the scheme adopted in the Short Characteristic technique
to evaluate optical depth and source term (that is relations 5.62,5.63,5.64 and
5.69,5.70) are schemes at the second order and allow to obtain more accurate
results than a Finite Difference scheme (see paragraph 6.1).

Let us consider the first derivative:

k1 =
∂k

∂s

∣

∣

∣

∣

i

=

ki+1−ki

∆si+1
· ∆si − ki−ki−1

∆si
· ∆si+1

∆si+1 + ∆si
(B.1)

Let us expand Ki−1 and Ki+1 in Taylor series of Ki:

ki−1 = ki −
∂k

∂x
∆xi−1 +

∂2k

∂x2

∆(xi−1)
2

2
− ∂3k

∂x3

∆(xi−1)
3

6
(B.2)

ki+1 = ki +
∂k

∂x
∆xi+1 +

∂2k

∂x2

∆(xi+1)
2

2
+

∂3k

∂x3

∆(xi+1)
3

6
(B.3)

In the following I will assume ∆xi−1 = ∆xi+1 = ∆x, so that

∆si = si+1 − si =
∂s

∂x
∆x +

∂2s

∂x2

∆(x)2

2
− ∂3s

∂x3

∆(x)3

6
(B.4)

∆si−1 = si − si−1 =
∂s

∂x
∆x − ∂2s

∂x2

∆(x)2

2
− ∂3s

∂x3

∆(x)3

6
(B.5)

where s denoted the grid space and x the regular space.
Substituting B.2-B.5 into B.1, and after some algebra, we find:

k1 ≃ ∂k

∂s
+

(∆x)2

6

∂3k

∂s3

(

∂s

∂x

)2

(B.6)

For a Finite Difference scheme, instead, the first derivative is given by

k1FD =
∂k

∂s

∣

∣

∣

∣

xi

=
∂k

∂x

∂x

∂s
=

ki+1 − ki−1

si+1 − si−1
(B.7)

Substituting refAk2-B.5 into this last expression we have

k1FD ≃ ∂k

∂s
+

(∆x)2

6

[

∂3k

∂s3

(

∂s

∂x

)2

+ 3
∂2s

∂x2

∂2k

∂s2

]

(B.8)
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Comparison of relations B.6 with B.8 shows that in the Finite Differences

scheme the error is larger, since the diffusion term 3 ∂2s
∂x2

∂2k
∂s2 is present.

Similar calculations lead to the same considerations for the second order
coefficient k2.

In agreement with these calculations, tests presented in chapter 6 show that
results obtained by Finite Differences and the scheme described in chapter 5 co-
incide on regular grids, while better results are obtained by the second scheme
on irregular grids.

I want to show that if a function χ is the product of two functions ρ and k,
and we want to approximate χ using the scheme described in 5, than the error
is smaller if χ is estimated by the product of the approximations of ρ and k
rather than expanding χ.

By definition we have χ = kρ. If we expand k and ρ at second order, we
have

χ = (k0 +k1∆s+k2(∆s)2)(ρ0 +ρ1∆s+ρ2(∆s)2) = ρ0k0 +(ρ0k1 +ρ1k0)∆s+ ...
(B.9)

A shown above,

k1 ≃ ∂k

∂s
+

(∆x)2

6

∂3k

∂s3

(

∂s

∂x

)2

(B.10)

and also

ρ1 ≃ ∂ρ

∂s
+

(∆x)2

6

∂3ρ

∂s3

(

∂s

∂x

)2

(B.11)

so that the first order term in the Taylor expansion B.9 is

ρ0k1 + ρ1k0 ≃ ρ0
∂k

∂s
+ k0

∂ρ

∂s
+

(∆x)2

6

(
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)2 [

ρ0
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∂3ρ

∂s3

]

(B.12)

If instead we expand χ to the second order

χ = χ0 + χ1∆s + χ2(∆s)2 (B.13)

where

χ1 ≃ ∂χ

∂s
+

(∆x)2

6

∂3χ

∂s3

(

∂s

∂x

)2

(B.14)

and
∂3χ

∂s3
= k0

∂3ρ

∂s3
+ ρ0

∂3k

∂s3
+ 3

∂2k

∂s2

∂ρ

∂s
+ 3

∂2ρ

∂s2

∂k

∂s
(B.15)

Comparison of relations B.14 and B.15 with B.12 shows that the error in the
evaluation of the first coefficient of Taylor expansion is larger if the expansion
is performed directly on χ rather than on ρ and k separately.
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Appendix to Chapter 7

C.1 Mixing Length models

There are three main mechanisms that regulate energy flow through a star:
Conduction, Radiation and Convection. The three mechanisms are more or less
efficient depending on the physical conditions and chemical composition. Since
these can considerably vary in different layers of a star, some mechanism can
dominate on the others at some locations. In the Sun, for instance, Conduction
is efficient only in the very deeper layers, close and inside the core. In the
outer layers Convection and Radiation dominate, but not in the same way. In
particular, convection sets in only when the Schwarzschild criterion is satisfied:

dT

dr
>

(

dT

dr

)

a

(C.1)

that is when the temperature gradient is steeper than the adiabatic gradient.
Previous condition is also often expressed as

∇ > ∇a (C.2)

where ∇ = lnT/ lnP . If the Schwarzschild criterion is satisfied, than motions
of increasing amplitudes occur. If the fluid is viscous, then the motions can
form regular cell patterns and become stationary. But in stellar plasma the vis-
cosity is usually too low and the fluid is turbulent. The problem of quantitative
description of turbulence is essentially not solvable and numerical simulations
are necessary. The Mixing Length is a model that, under some simplifications,
allows to estimate some physical quantities, like the energy flux carried by con-
vective motion, the vertical and horizontal velocities of the plasma and its tem-
perature. The theory was first developed by G.I. Taylor, W. Schmidt and L.
Prandtl, between 1915 and 1930, but the most used in the literature concerning
stellar physics is the one developed by Vitense (1953). This theory is based on
the assumption that the parcels, or ’eddies’, in a convective fluid all travel the
same distance l (the Mixing Length) before blending with the surrounding fluid.
Th length l is assumed to be proportional to the pressure scale height of the
fluid HP

l = αHP (C.3)
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where α is a constant. Its value for stars is usually between 1.5 and 2 (see
for instance Abbett et al. (1997)). Description of this theory can be find in
several books. I will therefore just give the outline of the derivation, following
the scheme of Stix (2002).

The aim is to calculate the mean temperature gradient dT/dr of the medium
in the presence of convection and radiation. The conservation of the flux requires
that the sum of the radiative and convective flux equals the total energy flux
FS :

FR + FC = FS (C.4)

where FS = LS/4πr2 and LS is the total solar Luminosity. For the radiative
flux it is custom to use the radiative diffusion approximation:

FR =
16σT 4

3kρHP
∇ (C.5)

and for the convective flux

FC =
α

2
ρcpT l

√

gδ

8HP
(∇−∇′)

3
2 (C.6)

where the factor δ takes into account possible variations of the mean molec-
ular weight µ and cp is the specific heat at constant pressure. ∇′ is the gradient
of the parcel during its rise. This quantity is in principle different from the adi-
abatic gradient, since the parcel loses energy through radiative processes. Using
previous expression, after some algebra flux conservation can be expressed as

∇−∇R +
9

8U
(∇−∇′)

3
2 = 0 (C.7)

where

U =
24

√
2σT 3P 1/2

cpkgl2δ1/2ρ5/2
(C.8)

and

∇R =
3kρHP LS

64πr2σT 4
(C.9)

Equation C.7 contains two unknowns, ∇, the quantity we want to estimate,
and ∇′. We thus need an other condition. This comes from supposing that
the radiative losses of the parcel during its rise can be described by radiative
diffusion approximation and from making some assumptions about the geometry
of the parcel. If we suppose that the parcel is a sphere (see Stix (2002) for details)
we have the second condition:

∇′ −∇a = 2U(∇−∇′)1/2 (C.10)

This last expression can be rewritten as a second order equation in ∇′. If
we solve it we find

∇−∇′ = (x − U)2 (C.11)

where
x2 ≡ ∇−∇a + U2. (C.12)
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Substituting relation C.11 into eq. C.7 we find the Cubic equation of the
Mixing Length:

9

8U
(x − U)3 + x2 − U2 −∇R + ∇a = 0 (C.13)

By an analyses of the discriminant of this equation, it can be shown it always
admits one Real and two Imaginary solutions. The equation in the variable x
is analytically solved and thus ∇ can be estimated.

C.1.1 Generalization of Mixing Length Formulation

I now discuss the case in which the Radiative Flux is not estimated by the ra-
diative diffusion approximation. Since the code developed to solve the radiative
transfer equation allows also to evaluate the Radiative Flux, in the following
this quantity is just referred as FR. Then, from flux conservation,

9

8U
(∇−∇′)3/2 = (FS − FR)

3kρHP

16σT 4
(C.14)

If we still suppose that the radiative losses of the parcel can be approximated by
the radiative diffusion, than, with x expressed by relation C.12, and the relation
C.11 still holding, we have

9

8U
(x − U)3 = F (C.15)

where F = (FS −FR)3kρHP

16σT 4 . For a given atmosphere, a total flux FS , and if FR

is known, than eq. C.15 gives ∇.

C.1.2 Not radiating parcel

I now consider the case in which the parcel is not losing energy by radiation,
that is ∇′ = ∇a, but still assume radiative diffusion. Flux conservation can be
written, using a notation different from eq. C.7, as:

KR∇ + KC(∇−∇a)3/2 = FS (C.16)

where KR and KC are radiative and convective diffusion coefficients re-
spectively, and by a comparison with equations C.5 and C.6, are given by:

KR = 16σT 4

3kρHP
and KC = α

2 ρcpT l
√

gδ
8HP

. I define ∇R = FS/KR (note that this is

equivalent to relation C.9, but the notation is different). Then previous equation
is rewritten as

∇ +
KC

KR
(∇−∇a)3/2 −∇R = 0 (C.17)

From this equation ∇ can be evaluated without any additional condition.
I want to discuss the cases in which the equation admits real solutions. A
cubic admits one Real solution and two Imaginary if its discriminant is greater
than zero. For simplicity let us rewrite previous equation introducing the new
variable y = ∇−∇a:

(

KC

KR

)2

y3 − y2 + 2y(∇R −∇a) − (∇R −∇a)2 = 0 (C.18)
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After some algebra we find that the the discriminant △ of the equation is

△ = (∇R −∇a)3
(

KC

KR

)2
[

−4 + 27(∇R −∇a)

(

KC

KR

)2
]

> 0 (C.19)

From the left term:

(∇R −∇a)3 > 0 =⇒ ∇R > ∇a (C.20)

From the right term:

(∇R −∇a) >
4

27

(

KC

KR

)2

=⇒ ∇R > ∇a +
4

27

(

KC

KR

)2

(C.21)

Combining the two conditions we have that the discriminant is greater than
zero if

∇R < ∇a; ∇R > ∇a +
4

27

(

KC

KR

)2

(C.22)

Note that in a convective unstable layer the conditions ∇a < ∇ < ∇R must
hold, so that the inequality on the left is never satisfied. Note also that the

case ∇a < ∇R < ∇a + 4
27

(

KC

KR

)2

is still physically possible, but in this case the

discriminant of the equation is negative and three real distinct solutions exist.

Not radiating parcel: Generalization

I now discuss the case in which, as above, the particle is not radiating, so that
∇′ = ∇a, but the radiative diffusion is not valid. The conservation of flux is:

FR + KC(∇−∇a)3/2 = FS (C.23)

from which

∇ = ∇a +

(

FS − FR

KC

)

(C.24)

This case is thus simple to solve once the Radiative Flux is estimated.

C.2 Radiative Diffusion models

In the case in which radiative diffusion is a good approximation and supposing
radiation is the sole energy transport mechanism, the energy equation is:

FSun =
16σT 3

3kρ

dT

dz
. (C.25)

This equation, together with the momentum equation:

dP

dz
= ρg (C.26)

and the perfect gas law P = KB

me
ρT allow to simulate simple atmospheric

model. In particular, analytical solutions can be derived in the case in which
the opacity is given by the Rosseland mean and is parametrized through k =
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k0ρ
mT n. Here I show, in particular, that the solutions are given by relations

7.15, 7.16 and 7.17.
For simplicity, let us define c = KB/me. Let us rewrite the energy and

momentum equation in the following way:

dz =
16σT 3

3kρFSun
dT (C.27)

dP

P
=

gc

T
dz (C.28)

Substituting eq. C.27 into C.28, we have

dP

P
=

16σgc

3kFSun

T 2

ρ
dT (C.29)

using the perfect gas law

dP

P
=

16σgc2

3kFSun

T 3

P
dT (C.30)

The opacity can also be rewritten as k = k0
P mT n−m

cm . Substituting in previ-
ous expression, we have

dP

P
=

16σgcm+2

3k0FSun

T m+3−n

Pm+1
dT (C.31)

If P 6= 0 we can write

PmdP =
16σgcm+2

3k0FSun
T m+3−ndT (C.32)

This equation, if m 6= −1 ∧ m − n + 3 6= −1, has solution:

P (z) =

[

16σgcm+2

3k0FSun

m + 1

m − n + 4
T m−n+4

]

1
m+1

(C.33)

Using the perfect gas law and expliciting the opacity as a function of P and
T , the energy equation can be rewritten as:

dT

dz
=

3k0FSun

16σcm+1
Pm+1T−(m−n+4) (C.34)

Substituting the solution C.32 into previous expression we obtain:

dT

dz
= gc

m + 1

m − n + 4
(C.35)

that has solution

T (z) =
m + 1

m − n + 4
gcz + Const. (C.36)

The density ρ(z) is derived by the perfect gas law:

ρ(z) =

[

16σ

3k0FSun

m + 1

m − n + 4
T 3−n

]
1

m+1

(C.37)
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Note that the gradient is constant respect to depth and is given by

∇ =
d lnT

d lnP
=

m + 1

m − n + 4
(C.38)

This quantity has to be greater than 0.4 for Schwarzschild criterion to be
satisfied.

Let us consider now the solutions generated when conditions m 6= −1∧m−
n + 3 6= −1 are not satisfied.

If m = −1 and m − n + 3 = −1, than n = 3. Than the gas is a polytrope
and P and T are related by:

P = T
16σg

3k0FSun (C.39)

The quantity 16σT 3

3kρ is a constant so that

T (z) =
3k0

16σ
FSunz + Const. (C.40)

If m = −1 but m− n + 3 6= −1, that is n 6= 3, than P and T are related by:

lnP =
16σgcm+2

3k0FSun

T 3−n

3 − n
(C.41)

Finally, if m 6= −1 and m − n + 3 = −1, that is n = m + 4, than

P =
16σgcm+2

3k0FSun

lnT

m + 1
(C.42)
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Appendix to Chapter 8

D.1 About the iso-optical depth surfaces and

the intensity profile

In this paragraph I show in detail how iso-optical depth surfaces form in 2D
plane parallel atmospheres in presence of flux tubes. This is also useful to
the understanding of the shape of intensity profile relative to the optical depth
considered. In order to point out the most relevant effects, I will discuss some
very simple examples. Intensity profiles and iso-optical depth surface can be
inferred using the same considerations here presented.

Let us consider the case in which density and opacity do not depend on
depth and let us assume that the values of these quantities in the tube are
lower than outside. Source function is null inside and outside the tube so that
temperature is not specified. Uniform intensity at the bottom of the domain
is imposed. At the top the optical depth is uniform as well and set to zero. I
want to show that the iso-optical depth surfaces have the shape illustrated in
fig.D.1 and D.2 and that the intensity profile observed is the one shown. Let us
consider first fig.D.1. Optical paths that come from positions x, with x < xD

or x > xA, reach the value τ = 1 without intersecting the tube. If χ0 is the
product of opacity and density in the quiet atmosphere, than the optical path
length s and τ are related by τ = s · χ0, so that if τ = 1 than s = 1/χ0. If α
is the angle formed by the rays and the horizontal direction, than s = z/ sinα,
where z is the height in a coordinate system in which the zero is at the top of
the domain. It follows that the position at which τ = 1 is z = sin α/χ0. The
value xD beyond which the rays intersect the tube is found considering that

z

xB − xD
= tanα (D.1)

from which xD = xB − cos α
χ0

. Rays that come from positions xD < x < xC reach
the τ = 1 value inside the tube. These paths thus partially cross the tube. Since
τ is by definition an integral, for the additive property we have τ = τ1+τ2 where
the subscript denote optical depth evaluated outside and inside the tube. It is
easy to show that in this case the position z at which τ = 1 is

z =
sin α

χ1
+ (xB) tanα(

χ0

χ1
− 1) (D.2)
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Figure D.1: Sketch of τ=1 surface (red line in bottom panel) and intensity
profile (top panel) for a model in which the source function is set to zero and
opacity and density are constant with height and have a lower value in the tube.
Intensity boundary condition at the bottom is the same inside and outside the
tube. τ=1 surface and intensity profile shapes are determined by the lengths of
optical paths portions that cross the tube.

where χ1 is the product of opacity and density in the tube. Previous relation
shows that the shape of the curve of the τ = 1 surface of rays that propagate at
position xD < x < xC is a line of slope tanα(χ0/χ1 − 1), as shown in fig.D.1.
Note also that since χ0 > χ1 the slope of the line is positive. If χ0 < χ1 than the
slope is negative. Moreover, the angle that this line forms with the horizontal
direction is smaller than the angle α if χ0 < 2χ1.

If xC < x < xB than the path starts in the quiet atmosphere, crosses the
tube and crosses the quiet atmosphere again. It is easy to see that the length
of the segment that crosses the tube is always the same, while the sum of the
two segments that cross the quiet atmosphere is constant for directions that
originate at xC < x < xB . The corresponding τ = 1 surface is thus a horizontal
line.

The case xB < x < xA is similar to the case xD < x < xC so that the
iso-optical depth surface is a line whose slope has opposite sign respect to the
DC line.

Figure D.2 illustrates the case in which the angle formed by the tube flanks
and the line of sight is smaller, that is the structure is closer to disk center. In
this case the τ = 1 surface is flat inside the tube, and corresponds to paths that
originate and travel totally inside the tube, that is for paths that originate at
positions xC < x < xB. Paths that originate at locations xD < x < xC and
xB < x < xA form lines inside and outside the tube respectively as already
explained.

The intensity profiles observed at the τ = 1 surfaces are shown in the upper
panels of fig.D.1 and fig.D.2. They can be easily understood considering that
the intensity at the bottom is constant and that there is no source function,
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Figure D.2: τ=1 surface (red line in bottom panel) and intensity profile (top
panel) for the model in fig. D.1 but for a different view angle.

so that the intensity at each point depends only on the amount of attenuation.
For instance, for the case in fig.D.1, the intensity corresponding to segment
AB of τ = 1 surface, increases from A to B, since the lower the location of
τ = 1 the lower is the attenuation. Intensity corresponding to segment BC
is obviously constant. Intensity corresponding to segments CD and DE is
constant as well, since the segments of optical paths from the bottom to the
τ = 1 line cross the tube and the non magnetic atmosphere in proportions that
make attenuation constant. Intensity decreases along segment EF since more
and more non magnetic atmosphere is crossed respect to the tube.

Intensity in fig.D.2 is very similar to intensity shown in fig.D.1, but here
the intensity corresponding to segment CD decreases from C to D. The cor-
responding rays, in fact, originate inside and cross only the tube, so that the
attenuation is larger in D rather than in C, where the path is shorter. Intensity
decreases again from D to E since more and more non magnetic atmosphere is
crossed.

Note that in both cases the intensity profile is asymmetric and broader than
the tube width. In particular a large asymmetry toward the observer (disk
center) is formed.

D.2 Ratio of contrasts in quiet atmosphere

I want to show that the ratio of contrast measured at different wavelengths for
a ’quiet’ atmosphere is slightly dependent on disk position, thus explaining to
the observed ratio of contrast of disk center. According to the Spruit flux tube
model, a magnetic element shows the wall behind it when observed at the limb,
being it more transparent than the surrounding ’quiet’ atmosphere. This means
that one is looking (through the tube) at the ’same’ atmosphere but at a deeper
region with respect to where one is looking far from the tube. The structure
thus appears more brilliant, the temperature being higher in the deeper layers.
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If we assume that the observed quiet atmosphere far from the tube comes from
the τ1=1 surface, in the regions around the tube it comes from τ2 >1. Let us
suppose that the Source function is a second order function of τ . The intensity
is thus:

I(λ, τ) = aλ + bλτ + cλτ2 + µ(bλ + 2cλτ) + cµ2 (D.3)

and the contrast is

C(λ) =
aλ + bλτ2 + cλτ2

2 + µ(bλ + 2cλτ2) + cµ2)

aλ + bλτ1 + cλτ2
1 + µ(bλ + 2cλτ1) + cµ2)

− 1 (D.4)

Pierce and Slaughter (1977) fitted the CLV variation of the quiet sun ob-
served in several wavelengths with second order polynomial in µ, that is:

I(λ, τ) = αλ + βλµ + γλµ2 (D.5)

If we suppose that these coefficients were estimated at τ=1, a comparison of
previous two formulas gives

αλ = aλ − bλ + cλ (D.6)

βλ = bλ − 2cλ

γλ = cλ

Among the wavelengths investigated by Pierce and Slaughter (1977), the clos-
est to the PSPT ones are 6109.7 and 4069.4 Å. They found aR=0.3463, bR=
0.92988, cR=-0.27635 and aB=0.1386, bB= 0.99664, cB=-0.13524, where sub-
scripts R and B denote the red and blue wavelengths respectively. Substituting
into D.6 we find αR=-0.85993, βR= 1.48258, γR=-0.27635 and αB=-0.99328,
βB= 1.26712, γB=-0.1524. Figure D.3 shows the ratio of contrast in the two

Figure D.3: Ratio of contrasts at two different wavelengths evaluated according
to D.4, where the coefficients are evaluated from the ones estimated by Pierce
and Slaughter (1977), τ1=1 and τ2=2.

wavelengths evaluated by substituting for each wavelength these values in for-
mula D.4 and supposing τ1=1 and τ2=2. This function is almost constant in
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the range 0.2 < µ < 0.8 and increases toward the center, as observed with real
data. Nevertheless both the value of the function in the range 0.2 < µ < 0.8
and the peak value do not correspond to the observed values. Discrepancies are
due to the fact that the wavelengths at which coefficients are evaluated are not
the same as observations, to the uncertainties in the value of τ2 and of course
to the fact that the presence of the flux tube is not taken into account.


